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Motivation
RpPb (Nch) 
Benchmark measurements R

pPb
 ~1 

no nuclear effects in p-Pb
→ suppression in Pb-Pb 
is a final state effect

Measurements at low-p
T
  

not explained with Ncoll x pp
→coherent/collective effects?
Strength increase with mult.
→geometry dependence 

Importance of 
cold nuclear matter 
effects to interpret J/ψ 
suppression in Pb-Pb 

DOUBLE RIDGE

RpPb (J/ψ) 
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Geometry dependence: Centrality
● Centrality: classification of collision geometry 
based on a measured observable
● Impact parameter b controls <Ncoll>

● for small systems b weakly correlated with Npart

ALICE Coll. PRC 91 (2015) 064905 

Centrality estimator related via a Glauber model to Ncoll
● description of the observable through a model
● conditional probability P(M | Ncoll)
● classify events as % of cross-section
● <Ncoll> in each centrality bin

CENTRALITY DETECTORS IN ALICE
● Mid-rapidity: ITS |η|<2, |η|<1.4
● Forward: V0A 2<η<5.1

V0C -3.7<η<-2.7
● Beam-rapidity: neutron ZDC (ZN) |η|<8.7

IP
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Geometry dependence: Centrality
● Centrality: classification of collision geometry 
based on a measured observable
● Impact parameter b controls <Ncoll>

● for small systems b weakly correlated with Npart

Centrality estimator related via a Glauber model to Ncoll
● description of the observable through a model
● conditional probability P(M | Ncoll)
● classify events as % of cross-section
● <Ncoll> in each centrality bin

Glauber + Negative Binomial Distribution

Glauber + Slow Nucleon Model

ALICE Coll. PRC 91 (2015) 064905 
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Geometry dependence: Centrality

2) Demonstrate the consistency of the approach:
● check if the centrality selection could induce a 
bias in the geometry parameters 

● → selection in a system with large relative 
fluctuations can induce a bias

● need to identify the physics origin of 
the bias to correct centrality dependent 
measurements

1) Verify the connection of the measurement 
to the collision geometry:
● correlating observables from kinematic 
regions casually disconnected after collision
● comparing Glauber MC and data 
for a known process

ALICE Coll. PRC 91 (2015) 064905 
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Biases in pA     
● Multiplicity bias: fluctuations sizable 

→centrality selection based on multiplicity may 
select a sample on NN collisions biased w.r.t. a 
sample defined by cuts on b

● MC generators: multiplicity fluctuations are due 
to fluctuations in MPIs 
→ bias in mult ~ bias in hard scattering

● Jet-veto: multiplicity range in peripheral events  
represent an effective veto on hard processes 

● Geometry bias:
Mean nucleon-nucleon impact parameter  (b

NN 
) 

increases in peripheral collisions
→ reduced number of MPI for peripheral events

 → QpPb = RpPb including possible biases

ALICE Coll. PRC 91 (2015) 064905 
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Deviations from binary scaling

● Central:
higher <mult/source> →R

pPb
>1

● Peripheral:
lower <mult/source> →R

pPb
<1 

→ large spread NOT related to 
nuclear effects!

Selecting events according to multiplicity leads to a  bias
→ Expected deviations from binary scaling at high p

T

G-PYTHIA: Incoherent superposition of N-N PYTHIA collisions reproduces data 

Jet-veto effect in most peripheral bin with a significant negative slope vs p
T

ALICE Coll. PRC 91 (2015) 064905 

QpPb (Nch) centrality: SPD |η| < 1.4
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The ALICE approach
1) assumption: an event selection based on Zero Degree Energy does not 
induce bias on bulk particle production at midrapidity
 

2) assumption: mechanism of particle production

● All values within at most 10% 
→ consistency of assumptions
● This does not yet prove the validity 
of any (or all) of these assumptions

a) Mid-rap dN/dη ~ N
part

 

b) Yield at high-p
T
 ~ N

coll

c)
 
Pb-side dN/dη ~ N

part

target (= N
coll  

in pA) 
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P-going side          

consistent with a longitudinal energy
transfer of the proton proportional to the 
number of binary collisions.
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● ZNA and V0A: establish their relation to 
centrality  P(Ncoll)➧

● P(Ncoll) distributions in ZNA bins  NBD ⊗
from Glauber fitto MB V0A multiplicity 

 P(Ncoll)➧
● unfolding: P(Ncoll) distributions  NBD from ⊗

Glauber fits V0A data in ZNA centrality bins 
 P(Ncoll)➧

  does not work for biased centrality selection 
(CL1)

Consistency Check

 

→ energy measured by ZN is connected to the 
collision geometry
→ ZNA unbiased centrality selection

ALICE Coll. PRC 91 (2015) 064905 

ZNA: Zero Degree Energy
V0A: Forward Multiplicity
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dN/dη at midrapidity

● V0A (Glauber) steeper than linear increase in Npart
● V0A (Glauber-Gribov) linear scaling with Npart apart from the peripheral point
 

● ZN centrality + assumptions on scaling for high-p
T
 and Pb-fragmentation side yields

show linear scaling with Npart within 10% and the peripheral bin agrees with pp data

ALICE Coll. PRC 91 (2015) 064905 
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Nuclear modification factor

● Nuclear modification factors consistent with unity at high p
T
 for whole centrality range

● intermediate-p
T
 enhancement (“Cronin”) increases with centrality  

● Results from the 2 assumptions used here are in agreement within uncertainties
● The geometry bias effect is still present in the most peripheral bin

ALICE Coll. PRC 91 (2015) 064905 

QpPb  (Nch) centrality: Zero Degree Energy

N
coll

Pb-side N
coll

mult
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 … and many more pA results vs. centrality... 
QpPb (jets) QpPb (D-mesons) 

QpPb (J/ψ) forward / mid / backward 
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Conclusions
● p-Pb physics program: As control experiment baseline measurements 

provide clear proof that effects in Pb-Pb collisions are genuine hot 
deconfined QCD matter effects 

● Study centrality dependence: is hard probes connection to collision 
geometry the same as for MB?
centrality selection →  different sources of bias

● ALICE approach:  
forward energy from nucleus fragmentation → unbiased selection 
+ assumptions for particle scaling 

● Centrality dependence of particle production:
- dN/dη at midrapidity scales with Npart
- high-p

T
 particle production follows binary scaling

 

but also: cold nuclear matter effects for J/ψ absorption
...
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Night wraps the sky in tribute from the stars.
(Vladimir Mayakovsky, 1930)



SQM 2015 Alberica Toia 15

Backup
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Detectors used for Centrality

Pb p

Slow Nucleons

Pb-Fragmentation

Nucleus fragmentation model:
Black nucleons: evaporation
Grey nucleons: knock-out
(eg C.Oppedisano 
https://edms.cern.ch/document/682801/1
F. Sikler arXiv: 0304.065)

Particle production modeled by
Negative Binomial Distribution
(NBD)

https://edms.cern.ch/document/682801/1
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VZERO Scintillators

2 layers Si Pixel
|η|< 2 ; |η|<1.4

Quartz-Fiber “Spaghetti”
Zero Degree Calorimeters

z = ± 112.5 m

TPC+ITS
Tracks |η| < 0.9

p Pb

Centrality Estimators:
CL1: Clusters in 2nd Pixel Layer
V0M: VZERO-A+C Multiplicity
V0A: VZERO-A Multiplicity
ZNA: ZDC-A Neutron Energy

z = 340 cm
2.8 < η < 5.1

z = -90 cm
-3.7 < η < -1.7

MID-RAPIDITY

ZN ZP

ZERO-DEGREE

Particle production modeled by
Negative Binomial Distribution
Pb-fragmentation more relevant 
at forward rapidity 

ZDC sensitive to slow nucleons 
Nucleus fragmentation model:
Black nucleons: evaporation
Grey nucleons: knock-out

Detectors used for Centrality
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Glauber Fit               
ρ(r )=ρ0

1

1+exp (
r−R
a

)

Glauber MC Parameters

R = 6.62 ± 0.06 fm

a = 0.546 ± 0.01fm

Minimum NN distance: 0.4±0.4 fm

pN Cross-section: σ
pN

 = 70 ± 5 mb

Proton radius: R
p
 = 0.6 ± 0.2 fm

Glauber + Slow Nucleon Model

Glauber + Negative Binomial Distribution

●Centrality classes: Multiplicity distribution 
sliced into percentiles of cross-section
●Obtain P(N

coll
) from Glauber MC

●For each N
coll

 obtain 
● Multiplicity from NBD
● Slow nucleons from SNM

●Obtain <N
coll

> for each centrality class
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 Ncoll from Glauber Fits

● <N
coll

Glauber> similar for 

different estimators
●Except for peripheral events, 
also similar to b-slicing
● Systematic error estimated 
by varying Glauber MC 
  parameters.
● MC closure test performed 
with HIJING
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Multiplicity Bias in pA

● Multiplicity bias: fluctuations sizable 
→Bias on Mult/N

part
 at central and 

peripheral collisions

● MC models with multi-parton interaction 
(MPI) include fluctuations of 
particle sources (hard scatterings) 
HIJING (X.N. Wang, M. Gyulassy, nucl-th/9502021)

→ bias in mult ~ bias in hard scattering

much smaller bias in Pb-Pb

Toy-MC: GPYTHIA
Pythia6 Perugia-2011
+ Glauber MC

n ha
rd
/N

co
ll
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Insights from Monte Carlo

Toy:
Pythia6 Perugia-2011
+ Glauber MC

HIJING
p-Pb 5.02 TeV
No shadowing

N
coll

 scaling:  n
hard

/N
coll

 = const.

n ha
rd
/N

co
ll

n ha
rd
/N

co
ll

p-Pb collisions described as incoherent 
superposition of nucleon-nucleon

- vs centrality from multiplicity |η| < 1.4
- only multiplicity bias
- strong deviation from N

coll
 -scaling at low and 

   high centralities.

Number of hard scatterings per p-N collision
- vs N

coll
 (no multiplicity bias here !)

- Deviation from N
coll

 scaling 

- at low N
coll 

: geometry b
NN

- at high N
coll

 : energy conservation (break down of

                        factorization)
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correlation between causally disconnected observables (eg: slow neutrons -  multiplicity)
→ connection to geometry.

Scaling of particle production
● <S>

i
 / <S>

MB
 vs <dN/dη>

i
/<dN/dη>

MB
(-1<η

lab
<0)

●

●

● Fit: assuming dN/dη scales with N
part

α = 0 – perfect N
part

 scaling

α = 1 – perfect N
coll

 (or N
part

target) scaling

α has clear meaning (N
part

 vs N
coll

 scaling)

● PHOBOS d-Au: η→ 1.6*η (beam rapidity)
● Similar dependence except A-going dir.

p

Pb
Ncoll

Npart

p

Pb
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Slow Nucleon Model
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Slow Nucleon Model

● Features of N
ch

 ~ independent of E
projectile

 (1GeV → 1 TeV)

● Slow nucleons emission dictated by collision geometry
→ Maxwell-Boltzmann (independent statistical emission)
classified from emulsion experiments  

● Gray: soft nucleons knocked out by wounded nucleons

● Black: low energy target fragments from de‐excitation, evaporation

● Glauber model → distribution of N
coll 

● implemented model used a parameterization 
of results from low energy experiments
C.Oppedisano https://edms.cern.ch/document/682801/1
F. Sikler, hep‐ph/0304065

 

saturation in N
black

 vs N
gray 

→ also in ZDC vs N
coll

ZDC

https://edms.cern.ch/document/682801/1
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ZNA correlations
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Scaling of particle production
● Scaling studied by defining so called self-normalized signals <S>i / 

<S>MB vs self-normalized mid-rapidity dNdeta(-1<eta_lab<0)

●

● Fit: assuming mid-rapidity dNdeta scales with Npart

α = 0 – perfect Npart scaling
α = 1 – perfect Ncoll (or Ntarget_part) scaling
α has clear meaning (Npart vs Ncoll scaling)

LINEAR POWER-LAW

β = 0 – perfect Npart scaling
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Scaling vs ηcms     

●PHOBOS d-Au dNdeta(eta) data, eta → 1.6*eta (beam rapidity RHIC → LHC)
●Similar dependence between our and PHOBOS data, except forward nucleus-going 
direction
●High-pT and inner VZERO-A ring quite similar, delta(alpha)~0.2
●Mid-rapidity vs inner VZERO-A is not perfect Npart vs Ncoll scaling, delta(alpha)~1.2

LINEAR POWER-LAW
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QpPb
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Mean QpPb at pT > 10 GeV

Same “S-shape” dependence as seen 
- from multiplicity bias (Glauber + NBD fit)
- from Toy-MC (Glauber + Pythia)
Shape flattens with increasing rapidity gap: 
CL1→V0M→V0A
QpA flat for hybrids  

p-Pb collisions described as incoherent 
superposition of nucleon-nucleon

- vs centrality from multiplicity |η| < 1.4
- only multiplicity bias
- strong deviation from N

coll
 -scaling at low 

and high centralities.
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Glauber-Gribov
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Multiplicity in pA

RAPIDITY DISTRIBUTION 
● Data favors models that 
incorporate shadowing
● Saturation models predict much 
steeper η-dependence which is not 
seen in the data

ENERGY DEPENDENCE
● ~15%below NSD pp collisions
● Similar to inelastic pp collisions 
● 84% higher than in d–Au collisions at 
√s

NN
 = 0.2 TeV.

ALICE Coll. Phys. Rev. Lett. 110, 032301 (2013) 
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Jets RpA

● R
pPb

 ~1 → no nuclear effects in pPb

→ suppression in PbPb is a final state effect 

Pb-Pb (central)
p-Pb (minimum bias)

ALICEColl. Phys. Lett. B 741 (2015) 38-50 
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Heavy Flavor RpA

● R
pPb

 ~1 → no nuclear effects in pPb

→ suppression in PbPb is a final state effect 

p-Pb

Pb-Pb

ALICE Coll. Phys. Rev. Lett. 113 (2014) 232301
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Flow, Cronin or saturation?
LHC vs. RHIC data

• Cronin effect: “re-distribution” of 
low-pT hadrons at higher pT due 
to multiple (parton) scattering
larger at RHIC
First observed by Cronin
in PRD 11 (1975) 3105
→ Multiple soft scatterings in
IS prior to hard scatter
(arXiv:hep-ph/0212148)

• flow: blue-shift of spectra
larger at LHC

• saturation: depletion of spectra 
at low pT
larger at LHCTo distinguish scenarios

look differentially!
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RpA for particle species

At intermediate pT
(Cronin region):
Indication of
mass ordering
– No enhancement
for pions and kaons
– Pronounced peak
for protons
– Even stronger for
cascades

Particle species dependence points to relevance of final state effects
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Double Ridge 

long range correlation:
Double (near+away side) ridge structure emerging
when subtracting per-trigger yield of low (60-100%)
from high-multiplicity (0-20%) events.
Near and away side
nearly identical
independent of mult.
→ common underlying
physics?

–

0-20% 60-100%

=

PLB 719 (2013),29-41

ALICEColl. PLB 719 (2013), pp. 29-41 
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RpA ALICE vs ATLAS vs CMS
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D. Perepelitsa
Hard Probes 2015
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D. Perepelitsa
Hard Probes 2015
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Mean pT

pp: high-mult through multiple parton interactions
BUT incoherent production → same <pt>
→ Color reconnection: strings from independent 
parton interactions do not independently produce 
hadrons, but fuse before hadronization
→  fewer, but more energetic, hadrons
Sign of collectivity?

pPb: features of both
less saturation than in PbPb → higher <pt>
Sign of collectivity?

PbPb: high-mult from 
superposition of 
parton interactions, 
collective flow 
→ moderate 
increase of <pt>

ALICE Coll. PLB 727 (2013) 371
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Detector:

Size: 16 x 26 meters

Weight: 10,000 tons

Technologies:18
Tracking:     7
PID: 6
Calo.:         5

Central Barrel
Tracking, PID
|η| < 0.9

Muon Arm

-4 < η < -2.5

ALICE
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