

Centrality dependence of elliptic flow of multi-strange hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Shusu Shi for the STAR collaboration

Central China Normal University

Outline

Introduction

Analysis Method

Results and Discussions

- Centrality dependence
- Partonic collectivity
- \blacktriangleright ϕ and proton v₂ at low p_T

> Summary

Elliptic Flow (v₂)

STAR Detectors

TAR

- \succ Clear signal for multi-strange hadrons and ϕ meson

 - \succ Ξ, Ω : topological cuts

Gaussian + 4th order polynomial fit

Run10 + Run11: 730 M events.

TAR

Event Plane determined by TPC tracks

Larger v₂ in more peripheral collisions -> final momentum anisotropy is driven by the initial spatial anisotropy *High precision data!*

- > Mass ordering when $p_T < 2$ GeV/c
- Baryon/meson splitting when 2 < p_T < 5 GeV/c High precision data prove that Ω follows the baryon/meson splitting. First time!

Mass Ordering for \$\$-mesons

> Ideal hydro + hadron cascade

Small hadron cross section + hadronic rescattering effect on v_2 Mass ϕ > mass p $\rightarrow v_2(\phi) > v_2(p)$

Break mass ordering for ϕ meson

$v_2(\phi)/v_2(p)$

> Model study indicates with increasing hadronic cascade time (more hadronic re-scattering), the $v_2(\phi)/v_2(p)$ ratio increases

> The ratio $v_2(\phi)/v_2(p)$ Is $4.35 \pm 0.98 \pm_{0.45}^{0.66}$ at $p_T = 0.52$ GeV/c in 0-30% ->

Possibly due to the effect of late hadronic interactions on the proton v_2

> The v₂ of Ω baryon follows baryon/meson splitting in the intermediate p_T range -> *Partonic collectivity*

There is a *possible* violation of hydrodynamics inspired mass ordering between φ and *p*-> *The effect of late-stage hadronic re-scattering on the proton v*₂