Equilibration of hadrons in HICs via Hagedorn states

K. Gallmeister, M. Beitel, C. Greiner

Motivation

Bootstrap model

covariant formulation, conserved charges (B,S,Q) detailed balance

Results and Outlook

Implementation into UrQMD / GiBUU

M.Beitel, KG, C.Greiner, PRC 90 (2014) 045203

SQM 2015 Dubna, 6.-11.7.2015

UrQMD Box

UrQMD: hadronic transport model

Bass et al., Prog.Part.Nucl.Phys. 41 (1998), 255

Problem: chemical equilibration takes too long

Colorless Heavy Objects

Cluster (HERWIG) B. Webber, Nucl.Phys.B 238 (1984) 492

Hagedorn states

R. Hagedorn, Nuovo Cim. Suppl. 3 (1965) 147

allow for decay & recombination !!!

Application of Hagedorn states

at SPS energies chem. equilibration time is 1-3 fm/c $n_1\pi + n_2K \leftrightarrow \overline{Y} + p$ C.Greiner, S.Leupold, 2000

at RHIC energies chem. equilibration time is 10 fm/c (with same approach)

fast chem. equilibration mechanism through Hagedorn states

$$(n_1\pi + n_2K + n_3\bar{K}\leftrightarrow) HS \leftrightarrow \bar{B} + B + X$$

dynamical evolution through set of coupled rate equations leads to 5 fm/c for BB pairs

> J.Noronha-Hostler et al., PRL100 (2008) J.Noronha-Hostler et al., J.Phys.G 37 (2010) J.Noronha-Hostler et al., Phys. Rev C81 (2010)

Bootstrap

cf.:

S. Frautschi, PRD 3 (1971) 2821 C. Hamer, S. Frautschi, PRD 4 (1971) 2125 J. Yellin, NPB 52 (1973) 583

- Assumption: only 2-body (detailed balance!)
 Input: known hadrons (UrQMD/PDG)
 - Bootstrap equation $\vec{C} = (B, S, Q)$ $\tau_{\vec{C}}(m) = \frac{R^3}{3\pi m} \sum_{\vec{C}_1, \vec{C}_2} \iint dm_1 dm_2 m_1 \tau_{\vec{C}_1}(m_1) m_2 \tau_{\vec{C}_2}(m_2)$ $\times p_{cm}(m, m_1, m_2) \, \delta(\vec{C} - \vec{C}_1 - \vec{C}_2)$

Total decay width (via detailed balance) $\Gamma_{\vec{C}}(m) = \frac{\sigma}{2\pi^2 \tau_{\vec{C}}(m)} \sum_{\vec{C}_1, \vec{C}_2} \iint \mathrm{d}m_1 \mathrm{d}m_2 \tau_{\vec{C}_1}(m_1) \tau_{\vec{C}_2}(m_2)$ $\times p_{\mathrm{cm}}^2(m, m_1, m_2) \,\delta(\vec{C} - \vec{C}_1 - \vec{C}_2)$

Spectra, Width

Single HS cascading decay: Multiplicity ratios

	p-p	Pb-Pb	4 GeV	8 GeV
$\overline{K^-/\pi^-}$	0.123(14)	0.149(16)	0.187	0.210
\overline{p}/π^{-}	0.053(6)	0.045(5)	0.043	0.066
Λ/π^-	0.032(4)	0.036(5)	0.021	0.038
Λ/\overline{p}	0.608(88)	0.78(12)	0.494	0.579
Ξ^-/π^-	0.003(1)	0.0050(6)	0.0023	0.0066
$\Omega^-/\pi^ \cdot$ 10^{-3}	_	0.87(17)	0.086	0.560

data: ALICE @ LHC $p - p : \sqrt{s_{NN}} = 0.9 \text{ TeV}$ $Pb - Pb : \sqrt{s_{NN}} = 2.8 \text{ TeV}$

M.Beitel, KG, C.Greiner, PRC 90 (2014) 045203

Single HS cascading decay: Spectra

spectra of decay products of single HS cascading decay chain look (!) thermal !!!

- slope equals Hagedorn temperature
- slope independent of mass, radius, charges

M.Beitel, KG, C.Greiner, PRC 90 (2014) 045203

UrQMD Box calculations

- Implementation into UrQMD
- Creation of Hagedorns replaces string interactions
- Box calculations
- Different initialization scenarios
 - Only pions
 - Only hadrons

Bottom-up

- Only Hagedorn states
- Top-down

Kinetic equilibration, slopes:

Conclusions

Microcanonical bootstrap implementation

HS properties connected to UrQMD limitations

- Input 'known hadrons' as implemented in UrQMD
- Only 2-body processes

Cascading decay chain of single HS:

- Multiplicity ratios close to experimental values (ALICE@LHC)
- Decay product spectra look thermal
- Slope equals Hagedorn temperature

Implementation into UrQMD, Box calculations

Fast equilibration: 2...5 (...10) fm/c

Kinetic slopes = $T_{\rm H}$ for all ε =0.2...2 GeV/c

To be done:

- Check (B,S,Q) vs. (B,S,I)
- Implement into GiBUU; cross check!