

Measurement of D-meson production in $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC with ALICE

Andrea Festanti on behalf of the ALICE Collaboration Università degli Studi di Padova - INFN Sez. di Padova

Outline

© Motivation and experimental observables
O ALICE experiment
© D-meson reconstruction

O Results

- Nuclear modification factor vs. p_{T} and centrality
- Azimuthal anisotropy
© Conclusions

Motivation

O Charm and beauty quarks produced in hard-scattering processes before the QGP formation

- Initially-produced heavy quarks in $\mathrm{Pb}-\mathrm{Pb}$ collisions propagate through the medium interacting with its constituents \rightarrow sensitive probes of the properties of the QGP

Motivation

O Charm and beauty quarks produced in hard-scattering processes before the QGP formation

- Initially-produced heavy quarks in $\mathrm{Pb}-\mathrm{Pb}$ collisions propagate through the medium interacting with its constituents \rightarrow sensitive probes of the properties of the QGP

INTERACTION WITH THE MEDIUM

- Parton energy loss via radiative (gluon emission) and collisional processes
- colour charge
- quark mass
- path length and medium density

Motivation

© Charm and beauty quarks produced in hard-scattering processes before the QGP formation
O Initially-produced heavy quarks in $\mathrm{Pb}-\mathrm{Pb}$ collisions propagate through the medium interacting with its constituents \rightarrow sensitive probes of the properties of the QGP

INTERACTION WITH THE MEDIUM

- Parton energy loss via radiative (gluon emission) and collisional processes
- colour charge
- quark mass
- path length and medium density
- Medium modification of the hadronisation

$\Delta E_{\mathrm{g}}>\Delta E_{\mathrm{u}, \mathrm{d}, \mathrm{s}}>\Delta E_{\mathrm{c}}>\Delta E_{\mathrm{b}}$ Compare $R_{\mathrm{AA}^{\pi}}, R_{\mathrm{AA}^{\mathrm{D}}}, R_{\mathrm{AA}^{\mathrm{B}}}$ process
- quark coalescence mechanism ?
- Participation in the collective expansion
- radial and elliptic flow

Observables

© Nuclear modification factor R_{AA} :

- Sensitive to parton energy loss

$$
R_{\mathrm{AA}}\left(p_{\mathrm{T}}\right)=\frac{d N_{\mathrm{AA}} / d p_{\mathrm{T}}}{\left\langle T_{\mathrm{AA}}\right\rangle d \sigma_{\mathrm{pp}} / d p_{\mathrm{T}}}
$$

- Compares production yields in Pb-Pb collisions to a binaryscaled pp reference

O Non-central $\mathrm{Pb}-\mathrm{Pb}$ collisions \rightarrow asymmetric spatial distribution of partons

- Collective expansion: initial spatial anisotropy \rightarrow momentum anisotropy of the final-state particles
- Heavy-quarks in-medium interactions + energy loss ? participation in the collective expansion
- Azimuthal anisotropy quantified in terms of

- elliptic flow $v_{2} \quad v_{2}=\left\langle\cos \left[2\left(\varphi-\Psi_{\mathrm{RP}}\right)\right]\right\rangle$
- azimuthal dependence of $R_{\text {AA }}$ with respect to the reaction plane
flight measurement, $|\eta|<0.9$

TPC: tracking with up to 159 space points per track and particle identification via dE/dx, $85<r<247 \mathrm{~cm},|\eta|<0.9$

D-meson Reconstruction

- $\mathrm{D}^{0}, \mathrm{D}^{+}$and $\mathrm{D}^{*}+$ and their antiparticles were reconstructed in the central rapidity region from their charged hadronic decay channels

$\mathrm{D}^{0} \rightarrow \mathrm{~K} \cdot \pi^{+}$	$[B R ~ 3.88 \pm 0.05 \%, \mathrm{C} \tau \approx 123 \mu \mathrm{~m}]$
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$	$[\mathrm{BR} 9.13 \pm 0.19 \%, \mathrm{C} \tau \approx 312 \mu \mathrm{~m}]$
$\mathrm{D}^{+}+\mathrm{D}^{0} \pi^{+}$	[strong decay, BR $67.7 \pm 0.5 \%]$

impact parameters $\sim 100 \mu \mathrm{~m}$

- Selection based on the reconstruction of secondary-vertex topologies displaced by a few hundred $\mu \mathrm{m}$ from the interaction vertex
- Topological cuts and particle identification of pions and kaons to reduce combinatorial background

D-meson $R_{A A}$ and $R_{\text {PA }}$ vs. p_{T}

○ Observed suppression (factor 3-5) for $p_{T}>5 \mathrm{GeV} / \mathrm{c}$ in central ($0-20 \%$) $\mathrm{Pb}-\mathrm{Pb}$ collisions is due to strong final-state effects induced by hot and dense partonic matter

D-meson RAA vs. pT (2011 data)

Average $R_{\text {AA }}(0-7.5 \%)$

Average $R_{\mathrm{AA}}(30-50 \%)$

© Large suppression (factor 6) at $p_{\top}=10 \mathrm{GeV} / \mathrm{c}$ in the $0-7.5 \%$ centrality class
© Suppression for $p_{T}>4 \mathrm{GeV} / \mathrm{c}$ observed in the $30-50 \%$ centrality class

- Models including charm interactions with medium constituents can describe both measurements

Djordjevic: arXiv:1307.4098
Cao, Qin, Bass: PRC 88 (2013) 044907
笉WHDG rad+coll: Nucl. Phys. A 872 (2011) 265

D-meson $R_{\text {AA }}$ vs. centrality

© Centrality quantified in terms of $<N_{\text {part }}>$ (average number of nucleons participating in the collision)
O Consistent results among the three D-meson species in both p_{T} intervals
© Suppression increases with centrality $\rightarrow>$ factor 5-6 in the most central collisions

D-meson $R_{A A}:$ comparison with pions and beauty

© Comparison of charged-pion and D-meson $R_{\text {AA }}$ in $5<p_{T}<8 \mathrm{GeV} / c$
© Compatible results within uncertainties

© Comparison of charged-pion, D-meson and non-prompt $\mathrm{J} / \psi R_{\mathrm{AA}}$
© Similar $<p_{T}>(\sim 10 \mathrm{GeV} / c)$ for D and B mesons ($B \rightarrow J / \Psi$)
O Indication of $R_{A A}(\mathrm{D})<R_{\mathrm{AA}}(\mathrm{B})$ in central Pb-Pb collisions

D-meson $R_{\text {AA }}$: comparison with model predictions

Comparison with a pQCD model including mass-dependent radiative and collisional energy loss:

O Agreement between D-meson and pion R_{AA}
© Colour-charge effect compensated by softer fragmentation and p_{T} spectrum of gluons with respect to c quarks
家arXiv:1506.06604
㙰Phys. Lett. B 737 (2014) 298

O Larger suppression of D mesons than of non-prompt J / Ψ for the most central collisions
O Difference driven predominantly by the quark-mass dependence of energy loss

D-meson $R_{A A}$: comparison with model predictions

O Model including collisional processes + radiative corrections + hydrodynamical expanding medium + quark recombination
○ Large difference between D mesons and non-prompt $\mathrm{J} / \psi \rightarrow>$ mass dependence of energy loss

O Model including only collisional processes (T-matrix approach) + hydrodynamic medium evolution + quark recombination
© No radiative $\Delta E \rightarrow>$ smaller mass effect

Nucl. Phys. A 910-911 (2013) 409; Phys. Lett. B 735 (2014) 445

D-meson v_{2}

© D-meson v_{2} measured with

- event-plane method (experimental estimate of the reaction plane)
- correlation methods: scalar product and 2-particle cumulants

(v_{2} of the three species consistent within uncertainties
O v_{2} larger than 0 in $2<p_{\top}<6 \mathrm{GeV} / c$, consistent results from the three methods

D^{0} and Charged-particle v_{2}

ALICE

ALI-PUB-70100
© V_{2} of similar magnitude for charmed hadrons and light-flavour hadrons
© Indication of decreasing trend of v_{2} towards more central collisions (consistent with decreasing initial-state geometrical asymmetry)

Phys. Rev. C 90 (2014) 034904

D-meson Azimuthal Anisotropy

ALICE

O D-meson v_{2} and, in-plane and out-of-plane $\mathrm{D}^{0} R_{\mathrm{AA}}$ in $\mathrm{Pb}-\mathrm{Pb}$ collisions in the $30-50 \%$ centrality class
O V_{2} larger than 0 in $2<p_{T}<6 \mathrm{GeV} / c$ with a significance of about 5σ

- Less suppression in the in-plane direction

Consistent with expectations from collective flow

D-meson v_{2} and $R_{A A}$

Comparison of theoretical model predictions to different observables simultaneously -> constraints on the description of the energy-loss mechanisms.

O Anisotropy best described by models including mechanisms that transfer to the charm quark the elliptic flow of the medium during the system expansion (collisional processes, hadronisation by recombination with light quarks)

- Models that best describe $R_{\text {AA }}$ tend to underestimate the measured v_{2}

Phys. Rev. Lett. 111 (2013) 102301 Phys. Rev. C 90 (2014) 034904

Conclusions

© Strong suppression of \mathbf{D} mesons observed in central $\mathrm{Pb}-\mathrm{Pb}$ collisions for $p_{T}>5 \mathrm{GeV} / c$

O $\mathrm{p}-\mathrm{Pb}$ results demonstrate that the suppression at high p_{\top} in $\mathrm{Pb}-\mathrm{Pb}$ collisions is due to the interaction with the hot and dense partonic medium
© Similar D-meson and charged-pion R_{AA} over the entire centrality range
© Larger suppression of \mathbf{D} mesons with respect to \mathbf{B} mesons (non-prompt J / Ψ by CMS) at $p_{\mathrm{T}} \sim 10 \mathrm{GeV} / c$
© D-meson $\boldsymbol{v}_{\mathbf{2}}$ larger than $\mathbf{0}$ in the interval $2<p_{T}<6 \mathrm{GeV} / c$ with a significance of 5σ
© LHC Run 2 objective: R_{AA} and v_{2} measurements with better precision and in an extended p_{T} range

Backup

18

D-meson $R_{\text {AA }}$ vs. ρ_{T} (2011 data)

© Large suppression (factor 6) at $p_{T}=10 \mathrm{GeV} / \mathrm{c}$ in the $0-7.5 \%$ centrality class
© Suppression for $p_{T}>4 \mathrm{GeV} / \mathrm{c}$ observed in the 30-50\% centrality class

D-meson $R_{A A}$ vs. p_{T} (2011 data)

O D-meson $R_{\text {AA }}$ at LHC and RHIC: different trend observed for $p_{T}<2 \mathrm{GeV} / c$

- stronger shadowing at LHC
- momentum distribution less steep in pp collisions at LHC
- different impact of coalescence

Feed-Down D-meson Subtraction

$$
\begin{aligned}
\left.\frac{\mathrm{d} \sigma^{\mathrm{D}^{0}}}{\mathrm{~d} p_{\mathrm{T}}}\right|_{\left|y_{\text {lab }}\right|<0.5} & =\frac{1}{\Delta y \Delta p_{\mathrm{T}}} \frac{\left.f_{\text {prompt }}\left(p_{\mathrm{T}}\right) \cdot \frac{1}{2} N_{\mathrm{raw}}^{\mathrm{D}^{0}+\overline{\mathrm{D}^{0}}}\left(p_{\mathrm{T}}\right)\right|_{\left|y_{\text {lab }}\right|<y_{\text {fid }}} \cdot c_{\text {refl }}\left(p_{\mathrm{T}}\right)}{(\text { Acc } \times \epsilon)_{\text {prompt }}\left(p_{\mathrm{T}}\right) \cdot \mathrm{BR} \cdot L_{\text {int }}} \\
f_{\text {prompt }} & =1-\frac{N^{\mathrm{D}^{0} \text { feed-down raw }}}{N^{\mathrm{D}^{0} \text { raw }}}= \\
& =1-\left\langle T_{\mathrm{AA}(\mathrm{pA})}\right\rangle \times\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} y \mathrm{~d} p_{\mathrm{T}}}\right)_{\text {feed-down }}^{\text {FONLL }} \times R_{\mathrm{AA}(\mathrm{pA})}^{\text {feed-down }} \times \\
& \times \frac{(\operatorname{Acc} \times \epsilon)_{\text {feed-down }} \cdot \Delta y \Delta p_{\mathrm{T}} \cdot \mathrm{BR} \cdot N_{\text {evt }}}{N^{\mathrm{D}^{0} \text { raw }} / 2} .
\end{aligned}
$$

- pQCD calculation of the beauty production cross section $\rightarrow>D$ from B yield
- Assumption on the nuclear modification factor of D mesons from B decays.

$$
\begin{aligned}
& R_{\mathrm{AA}}^{\text {feed }- \text { down }}=2 \cdot R_{\mathrm{AA}}^{\text {prompt }} \\
& 1<R_{\mathrm{AA}}^{\text {feed }- \text { down }} / R_{\mathrm{AA}}^{\text {prompt }}<3
\end{aligned}
$$

Variation considered to estimate the systematic uncertainty

D-meson Cross Section

D-meson v_{2} - Event-Plane Method

- D^{0} meson azimuthal anisotropy quantified through:
- elliptic flow v_{2} : the second coefficient of the expansion

$$
v_{2}=\frac{1}{R_{2}} \frac{\pi}{4} \frac{N_{\text {in-plane }}-N_{\text {out-of-plane }}}{N_{\text {in-plane }}+N_{\text {out-of-plane }}}
$$

- nuclear modification factor $R_{\text {AA }}$ azimuthal dependence with respect to the reaction plane
reaction plane

$$
R_{\mathrm{AA}}^{\mathrm{in}(\text { out })}\left(p_{\mathrm{T}}\right)=\frac{\mathrm{d} N_{\mathrm{AA}}^{\text {in(out })} / \mathrm{d} p_{\mathrm{T}}}{\left\langle T_{\mathrm{AA}}\right\rangle \cdot\left(\mathrm{d} \sigma_{p p} / \mathrm{d} p_{\mathrm{T}}\right) / 2}
$$

Event-Plane Angle

$$
\vec{Q}=\binom{\sum_{i=1}^{N} w_{i} \cos 2 \varphi_{i}}{\sum_{i=1}^{N} w_{i} \sin 2 \varphi_{i}}
$$

$\psi_{2}=\frac{1}{2} \tan ^{-1}\left(\frac{Q_{y}}{Q_{x}}\right)$

$$
R_{2}^{\mathrm{sub}}=\sqrt{\left\langle\cos \left[2\left(\psi_{2}^{A}-\psi_{2}^{B}\right)\right]\right\rangle}
$$

D-meson v_{2}-Event-Plane Method

D－meson Azimuthal Anisotropy

$\mathrm{D}^{0} R_{\mathrm{AA}}(30-50 \%)$
In－plane
Out－of－plane

© $R_{\text {AA }}$ measured in－plane and out－of－plane，sensitive to
－path length dependence of parton energy loss at high p_{T}
－collectivity at low p_{T}

WHDG rad＋coll：Nucl．Phys．A 872 （2011） 265
量POWLANG：JPG 38 （2011） 124144
良Cao，Qin，Bass：PRC 88 （2013） 044907
殑MC＠sHQ＋EPOS：PRC 89 （2014） 014905

孹BAMPS：PLB 717 （2012） 430
TAMU elastic：arXiv：1401．3817
UrQMD：J．Phys．Conf．Ser． 426 （2013） 012032
Phys．Rev．C 90 （2014） 034904

Feed-Down D-Meson v_{2}

$$
v_{2}^{\text {prompt }}=\frac{1}{f_{\mathrm{prompt}}} v_{2}^{\text {all }}-\frac{1-f_{\mathrm{prompt}}}{f_{\mathrm{prompt}}} v_{2}^{\text {feed }- \text { down }}
$$

Assumption

$$
v_{2}^{\mathrm{feed}-\text { down }}=v_{2}^{\mathrm{prompt}}
$$

Variation considered to estimate the systematic uncertainty

$$
0 \leq v_{2}^{\text {feed }- \text { down }} \leq v_{2}^{\text {prompt }}
$$

Scalar Product and 2-Particle Cumulant

Scalar Product

$$
\begin{aligned}
& v_{2}\{\mathrm{SP}\}= \frac{1}{2}\left(\frac{\left\langle\vec{u}_{a} \cdot \frac{\vec{Q}_{b}}{N_{b}}\right\rangle}{\sqrt{\left\langle\frac{\vec{Q}_{a}}{N_{a}} \cdot \frac{\vec{Q}_{b}}{N_{b}}\right\rangle}}+\frac{\left\langle\vec{u}_{b} \cdot \frac{\vec{Q}_{a}}{N_{a}}\right\rangle}{\sqrt{\left\langle\frac{\vec{Q}_{a}}{N_{a}} \cdot \frac{\vec{Q}_{b}}{N_{b}}\right\rangle}}\right) \\
& \vec{u}=\left(\cos 2 \varphi_{\mathrm{D}}, \sin 2 \varphi_{\mathrm{D}}\right)
\end{aligned}
$$

Elliptic flow computed by correlating D mesons from the positive eta-region and charged particles in the negative eta-region (and vice-versa)

Two-Particle Cumulant

$$
v_{2}\{2\}=\frac{\left\langle\vec{u} \cdot \frac{\vec{Q}}{N}\right\rangle}{\sqrt{\left\langle\frac{\vec{Q}_{a}}{N_{a}} \cdot \frac{\vec{Q}_{b}}{N_{b}}\right\rangle}}
$$

No pesudo-rapidity gap between the D mesons and reference particles

