Prospects for heavy flavour measurements with the ALICE inner and forward tracker upgrade

F. Fionda⁽¹⁾, On behalf of the ALICE Collaboration

INFN

1

⁽¹⁾University & INFN, Cagliari, Italy

Strangeness in Quark Matter Dubna 6-11 July 2015

Outline

Introduction

Goals of future ALICE HF program

The ALICE Upgrade strategy

The upgraded Inner Tracking System and the new Muon Forward Tracker

- Detector layouts
- Physics Performance

Conclusions

2

Heavy flavours as probes of the QGP

- The study of heavy-flavour particles (i.e. containing charm and beauty quarks) is important in A-A since they are produced at the early stage of the collisions
 - → sensitive to the full evolution of the hot and dense strongly-interacting medium (QGP)
 - Partonic energy loss (radiative + collisional) different for gluons, light / heavy quarks. Hierarchy expected in the HF sector

 $\Delta E_c > \Delta E_b \longrightarrow R_{AA}(D) < R_{AA}(B)$

✓ initial space anisotropy transferred to the momentum space → quantified by the second term of the Fourier expansion: elliptic flow (v₂)

✓ v_2 >0 for HF hadrons → collectivity of heavy quarks in the QGP (low p_{T})

✓ Recombination mechanism (at low p_{T}):

 \checkmark predicts that the strange/non-strange (D₁/D) and baryon/meson (Λ_1 /D,

 $\Lambda_{\rm b}/B$) ratios are enhanced w.r.t. pp

Complementary studies at central / forward rapidity \rightarrow unique tool to study QGP with different densities at LHC $_3$

SQM 2015

Objectives of the future HF program in ALICE

✓ Interesting results obtained from the Run1 data, but there are still open points \rightarrow goals of the future HF program:

Central rapidity:

- D mesons: high-precision measurement down to very low-p₊
- Exclusive reconstruction of the charm baryon Λ_c (proper decay length,cτ, only 60 µm)
- Exclusive reconstruction of beauty mesons and baryons
- Forward rapidity:
 - ✓ Precise determination of the muon production point \rightarrow
 - charm/beauty separation in single muons
 - ✓ Beauty measurement via non-prompt J/ψ
 - Reduce background from π/K decays and the corresponding systematic uncertainties induced by background subtraction for HF-decay muon measurements at low p₁

5

F. Fionda

SQM 2015

The ALICE Upgrade strategy

Plenary talk by A. Dainese

✓ **Physics goal:** high precision measurements of rare probes at low p_{T} which cannot be selected with a dedicated trigger (very low signal/background)

Requirements:

- ✓ Very high statistics minimum bias sample: target $L_{int} = 10$ mb⁻¹ → x100 w.r.t. Run2 minimum-bias
- Improve spatial precision on track and vertex position

Strategy:

- ✓ Upgrade read-out (for several detectors) and new online-offline system → read out all Pb-Pb interactions at a maximum rate of 50 kHz with a minimum bias trigger
 - Upgrade of the Time Projection Chamber (TPC) (replacing MWPCs with micro-pattern gaseous detectors)

New Silicon Trackers:

- Upgraded ITS at mid rapidity
- New Muon Forward Tracker (MFT) at forward rapidity

[Upgrade of the ALICE Experiment, Letter of Intent: CERN-LHCC-2012-012] [Addendum to the Letter of Intent, The Muon Forward Tracker: CERN-LHCC-2013-014]

6

Layout and detector performance for ITS and MFT

7

Design goals of the new ITS:

- Improve impact parameter resolution by a factor ~3 (6) in r φ (z)
 - ✓ get closer to the IP: first layer at $r_0 = 23$ mm (currently 39 mm) and beam pipe radius $r_{hn} = 18.6$ mm (currently 29.4 mm)
 - material budget: 0.3% X₀ per layer for the three innermost layers (currently 1.1% X₀)
 - ✓ smaller pixel size: $o(30\mu m \times 30\mu m)$ (currently $50\mu m \times 425\mu m$)
- ✓ Improve tracking efficiency and p_{τ} resolution especially at low p_{τ} : increase number of layers to 7 (currently 6 layers) and granularity
- Fast readout: up to 100 kHz in Pb-Pb, up to 400 kHz in pp (currently 1 kHz in Pb-Pb)

The upgraded ITS at mid rapidity

Detector performance studies:

performed with simulations with realistic and complete detector geometry and material budget description

Impact parameter resolution
in rφ improved by a factor ~3

Track reconstruction efficiency <u></u>100 Efficiency 80 CERN-LHCC-2013-024 ALICE-TDR-017 60 ALICE Current ITS Upgraded ITS 40 IB: X/X = 0.3%; OB: X/X = 0.8% Present ITS 20 **Upgraded ITS** 0 10^{-1} 10 1 p_{_} (GeV/c)

✓ Track reconstruction efficiency ~90% at p_{T} =0.1-0.2 GeV/c

SQM 2015

F. Fionda

9

The extrapolation of the muon track candidates to the interaction region is affected by the presence of the absorber (large multiple scattering)

→ no constraints in the region of primary vertex are available with the present muon spectrometer !

SQM 2015

10

Heavy Flavour Physics performance (selected highlights)

13

HF via single muons at forward rapidity

Goal: measure separately c-decay / b-decay muon production (flow)

 \checkmark Strategy: template fit of track-to-vertex offset (in xy) distribution in narrow p₋ intervals

 Statistical uncertainty very small (~0.1%) assuming 10nb⁻¹

✓ Charm and beauty yields accessible from $p_{T}(\mu)=1$ and 3 GeV/c respectively

Important baseline for charmonium measurements

Conclusions

- New detectors will be installed during the Long Shutdown 2 and will be ready for the Run3 of LHC foreseen from 2020
- The installation of the new pixel trackers, ITS and MFT, will significantly extend the ALICE physics reach in the HF sector in a large rapidity window:
 - ✓ Improved precision for existing measurements down to p_{τ} =0
 - New and unique measurements in both charm and beauty sectors

Charm and beauty era of the QGP!

Find much more in:

