

(Multi)-strange hadrons in Pb+Pb collisions and correlations in p+Pb collisions at the LHC

Xiangrong Zhu (xrongzhu@pku.edu.cn)

Department of Physics and State Key Laboratory of Nuclear Physics and Technology Peking University, Beijing 100871, P.R. China

Strangeness in Quark Matter 2015 July 06–11, 2015, Dubna, Russia

Main references:

- X. Zhu, F. Meng, H. Song, and Y. X. Liu, Phys. Rev. C 91, no. 3, 034904 (2015).
- Y. Zhou, X. Zhu, P. Li and H. Song, Phys. Rev. C 91, 064908 (2015).

Xiangrong Zhu (PKU)

Strangeness in Quark Matter 2015

Outline

Introduction

- Viscous hydrodynamics
- Hybird approaches for heavy-ion collisions
- (Multi-)strange hadrons in Pb+Pb at $\sqrt{s_{\rm NN}}{=}2.76$ TeV
 - $\bullet\,$ Multiplicities, $p_{\rm T}\mbox{-spectra}$ and elliptic flow of (multi-)strange hadrons
 - Chemical and thermal freeze-out of various hadrons species
- \bullet Correlations in p+Pb collisions at $\sqrt{s_{\rm NN}}{=}5.02~{\rm TeV}$
 - Experimental measurements and hydrodynamic calculations
 - Correlations from hadronic cascade model, UrQMD
- Summary

Stages of ultra-relativistic heavy ion collisions

Basics of viscous hydrodynamics

- Energy momentum tensor $T^{\mu\nu}(x)$: $\partial_{\mu}T^{\mu\nu}(x) = 0$ where $T^{\mu\nu} = [e + p + \Pi]u^{\mu}u^{\nu} - (p + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$ with
 - Viscous bulk pressure Π $\dot{\Pi} = -\frac{1}{\tau_{\Pi}}(\Pi + \zeta \partial \cdot u) - \frac{1}{2}\Pi \frac{\zeta T}{\tau_{\Pi}} \partial_{\lambda}(\frac{\tau_{\Pi}}{\zeta T} u^{\lambda})$
 - Traceless viscous shear pressure tensor $\pi^{\mu\nu}$ $\Delta^{\alpha\mu}\Delta^{\beta\nu}\dot{\pi}_{\alpha\beta} = -\frac{1}{\tau_{\pi}}(\pi^{\mu\nu} - 2\eta\sigma^{\mu\nu}) - \frac{1}{2}\pi^{\mu\nu}\frac{\eta T}{\tau_{\pi}}\partial_{\lambda}(\frac{\tau_{\pi}}{\eta T}u^{\lambda})$
- Conserved charge current $N_i^{\mu}(x)$: $\partial_{\mu}N_i^{\mu}(x) = 0$, i = 1, ..., kFor simplicity, only consider the conserved net baryon number current.

Stages of ultra-relativistic heavy ion collisions

Basics of viscous hydrodynamics

- Energy momentum tensor $T^{\mu\nu}(x)$: $\partial_{\mu}T^{\mu\nu}(x) = 0$ where $T^{\mu\nu} = [e + p + \Pi]u^{\mu}u^{\nu} - (p + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$ with
 - Viscous bulk pressure Π $\dot{\Pi} = -\frac{1}{\tau_{\Pi}}(\Pi + \zeta \partial \cdot u) - \frac{1}{2}\Pi \frac{\zeta T}{\tau_{\Pi}} \partial_{\lambda}(\frac{\tau_{\Pi}}{\zeta T} u^{\lambda})$
 - Traceless viscous shear pressure tensor $\pi^{\mu\nu}$ $\Delta^{\alpha\mu}\Delta^{\beta\nu}\dot{\pi}_{\alpha\beta} = -\frac{1}{\tau_{\pi}}(\pi^{\mu\nu} - 2\eta\sigma^{\mu\nu}) - \frac{1}{2}\pi^{\mu\nu}\frac{\eta T}{\tau_{\pi}}\partial_{\lambda}(\frac{\tau_{\pi}}{\eta T}u^{\lambda})$
- Conserved charge current $N_i^{\mu}(x)$: $\partial_{\mu}N_i^{\mu}(x) = 0$, i = 1, ..., k-For simplicity, only consider the conserved net baryon number current. Assume zero net baryon density at the LHC.

Stages of ultra-relativistic heavy ion collisions

Basics of viscous hydrodynamics

- Energy momentum tensor $T^{\mu\nu}(x)$: $\partial_{\mu}T^{\mu\nu}(x) = 0$ where $T^{\mu\nu} = [e + p + \Pi]u^{\mu}u^{\nu} - (p + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$ with
 - Viscous bulk pressure Π $\dot{\Pi} = -\frac{1}{\tau_{\Pi}}(\Pi + \zeta \partial \cdot u) - \frac{1}{2}\Pi \frac{\zeta T}{\tau_{\Pi}} \partial_{\lambda}(\frac{\tau_{\Pi}}{\zeta T}u^{\lambda})$
 - Traceless viscous shear pressure tensor $\pi^{\mu\nu}$ $\Delta^{\alpha\mu}\Delta^{\beta\nu}\dot{\pi}_{\alpha\beta} = -\frac{1}{\tau_{\pi}}(\pi^{\mu\nu} - 2\eta\sigma^{\mu\nu}) - \frac{1}{2}\pi^{\mu\nu}\frac{\eta T}{\tau_{\pi}}\partial_{\lambda}(\frac{\tau_{\pi}}{\eta T}u^{\lambda})$
- Conserved charge current $N_i^{\mu}(x)$: $\partial_{\mu}N_i^{\mu}(x) = 0$, i = 1, ..., k-For simplicity, only consider the conserved net baryon number current. Assume **zero net baryon density** at the LHC.

Xiangrong Zhu (PKU)

 $\left. \begin{array}{c} \text{Input EoS } p(e,n) \\ \text{for closure} \end{array} \right|$

Hybrid approaches

Hydrodynamic+hadronic cascade hybrid approach

- VISHNU hybrid approach:
 - Initial condicaitons: MC-Glauber, MC-KLN (this work)
 - Hydrodynamic: VISH2+1, $\eta/s = 0.16$, and EoS: s95p-PCE
 - Switching temperature: $T_{\rm sw} = 165 {\rm MeV}$
 - Hadronic cascade: UrQMD, hadronic rescattering and resonance decays
- Other hybrid approaches:
 - D. Teaney, J. Lauret and E. V. Shuryak, nucl-th/0110037.
 - C. Nonaka and S. A. Bass, Phys. Rev. C 75, 014902 (2007).
 - T. Hirano et al., Phys. Lett. B 636, 299 (2006).
 - H. Petersen et al., Phys. Rev. C 78, 044901 (2008).
 - K. Werner et al., Phys. Rev. C 82, 044904 (2010).
 - • •

Multiplicities, spectra and elliptic flow for (multi-)strange hadrons

Multiplicities for identified hadrons in Pb-Pb collisions

- With baryon-antibaryon $(B-\bar{B})$ annihilations
 - Reduce dN_p/dy and $dN_{\bar{p}}/dy$ by $\mathcal{O}(30\%)$. H. Song *et al.*, PRC (2014).
- Λ results
 - ALICE results: contaminated by the feed-down decays of Σ^0 and $\Sigma(1385)$.
 - Λ corrected (solid line): summed weak decays from $\Sigma^0 \rightarrow \Lambda + \gamma$.
 - Λ uncorrected (dashed line): no weak decays of $\Sigma^0.$
- VISHNU nicely describes the multiplicities for various hadrons species at most centrality bins.

X. Zhu, F. Meng, H. Song, and Y. X. Liu, PRC 2015.

- Λ results from VISHNU are without weak decays, ${\sim}30\%$ lower than the experimental measurements with weak decay contaminations.
- VISHNU nicely fits the slope of the spectra for $\Lambda,$ $\Xi,$ and Ω and at various centralities.

- Below 2 GeV, v_2 for Λ , Ξ , and Ω are fairly well described by VISHNU within the statistical error bars.
- Above 2 GeV, the descriptions of v_2 for Ξ at 50-60% and Ω for at 30-40% and 50-60% become worse.

Mass ordering of elliptic flow for identified hadrons

X. Zhu, F. Meng, H. Song, and Y. X. Liu, PRC 2015.

- VISHNU nicely describes the mass ordering among π , K, p, and Ω .
- VISHNU fails to describe the mass ordering among $p, \ \Lambda$ and $\Xi.$
- VISHNU slightly under-predicts the proton v_2 below 2 GeV, leading to inverse mass ordering between p and Λ .

Initial flow could enhance the radial flow

- An initial flow is expected to improve the description of mass ordering.
- UrQMD hadronic cross sections also need to be reevaluated and improved.

Chemical and thermal freeze-out for identified hadrons

- Chemical freeze-out: hadron multiplicity no longer changes—termination of inelastic collisions.
- Thermal freeze-out: hadron momentum is fixed-end of elastic collisions.

• Statistical model:

three parameters

- Chemical freeze-out temperature \ensuremath{T}
- Baryo-chemical potential μ_b
- Fireball volume V
- Temperature is about 162 MeV at 200 GeV.

- Excluding p/\bar{p} , other data can be descriped by a temperature of 164 MeV.
- A good description of the p/\bar{p} data with T around 150 MeV.
- $\bullet\,$ This temperature results into the yield of Λ and Ω is under-predicted.

- Excluding p/\bar{p} , other data can be descriped by a temperature of 164 MeV.
- A good description of the p/\bar{p} data with T around 150 MeV.
- $\bullet\,$ This temperature results into the yield of Λ and Ω is under-predicted.

How about the result from VISHNU?

Statistical Model

Proton "puzzle" from statistical hadronization model

VISHNU

- Excluding p/\bar{p} , other data can be descriped by a temperature of 164 MeV.
- A good description of the p/\bar{p} data with T around 150 MeV.
- VISHNU gives a nice description of all hadrons.

Proton "puzzle" from statistical hadronization model

VISHNU

- Excluding p/\bar{p} , other data can be descriped by a temperature of 164 MeV.
- A good description of the p/\bar{p} data with T around 150 MeV.
- VISHNU gives a nice description of all hadrons.

It is significant to further investigate the freeze-out with the hybrid model.

Chemical freeze-out for identified hadrons (I)

- With and without $B-\bar{B}$ annihilations.
- Method: define different times of the calculation and output in UrQMD.

• Left panels: the ratio of multiplicity density at t to at t = 0 fm/c.

► Right panels: the change rate of multiplicity density scaled by the multiplicity density at t.

X. Zhu, F. Meng, H. Song, and Y. X. Liu, PRC 2015.

Chemical freeze-out for identified hadrons (II)

Further analysis of **effective chemical freeze-out** T, is needed to do when the UrQMD is updated to record more intermediate evolution information.

Thermal freeze-out for identified hadrons (I)

X. Zhu, F. Meng, H. Song, and Y. X. Liu, PRC 2015.

- Only with $B\text{-}\bar{B}$ annihilations
- Thermal freeze-out time: time of last elastic collision or decay for various hadrons species.

Thermal freeze-out for identified hadrons (II)

- The peaks of Ξ and Ω are located around 10 ${\rm fm}/{\it c}.$
- The peaks of p and Λ are shifted to 20-30 ${\rm fm}/c.$

 \Rightarrow Multistrange hadrons experience earlier thermal freeze-out.

• Freeze-out time distributions of π and K spread widely along the time axis.

 \Rightarrow Meson species still suffer hadronic scattering even during the late stage.

- X. Zhu, F. Meng, H. Song, and Y. X. Liu, PRC 2015.
 - Thermal freeze-out is strongly hadron species dependent.
 - Multistrange hadrons Ξ and Ω experience earlier thermal freeze-out, as expected, due to their much smaller hadronic cross sections.

Correlations in p+Pb collisions at $\sqrt{s_{\rm NN}}$ =5.02 TeV

Collective flow in p+Pb? – Experimental Observations

Collective flow in p+Pb? – Hydrodynamics simulations

Elliptic and triangular flow from 3+1-dimensional hydrodynamics

• P. Bożek et al., NPA 926, 16 (2014).

• G. Y. Qin et al., PRC 89, 044902 (2014).

Collective flow in p+Pb? – Hydrodynamics simulations

Mass ordering of v_2 for π , K, and p

• P. Bożek et al., NPA 926, 16 (2014).

• K. Werner, et al., PRL 112, 232301 (2014).

- Where does the correlations (collective flow) in 5.02 TeV p+Pb collisions come from?
 - Initial State or/and QGP?
- Is it possible to generate such flow-like correlations through pure hadronic interaction?

UrQMD Baseline Calculations

Y. Zhou, X. Zhu, P. Li and H. Song, Phys. Rev. C 91, 064908 (2015).

Assumption:

 $p\!+\!Pb$ collisions only produce hadronic systems without reach the threshold of the QGP formation

$v_2(p_{\rm T})$ in p+Pb collisions at 5.02 TeV

• Multi-particle cumulant method.

Y. Zhou et al, PRC **91**, 064908 (2015)

- Sizeable values of $v_2\{2\}$ with different peseudorapidity gap cuts.
- With large pseudo-rapidity gap cuts, $v_2\{2\}$ from UrQMD is comparible to the experimental data

$v_2(p_{\rm T})$ mass ordering in p+Pb collisions at 5.02 TeV

UrQMD

ALICE

• Remarkable mass ordering is produced by UrQMD like ALICE data, but with larger magnitude.

Does the Hadronic p+Pb system really flow?

Does the Hadronic p+Pb system really flow?

Check with the multi-particle method

• $v_n\{2\} = \sqrt{c_n\{2\}} \Rightarrow 2$ -particle cumulant should be **positive**.

• $v_n\{4\} = \sqrt[4]{-c_n\{4\}} \Rightarrow$ 4-particle cumulant should be **negative**.

Multi-particle cumulants of v_2 from UrQMD

Y. Zhou et al, PRC 91, 064908 (2015)

- 2-particle cumulant of v_2 : $c_2\{2\} = \langle \langle 2 \rangle \rangle = \langle \langle e^{i2(\phi_1 \phi_2)} \rangle \rangle = \langle v_2^2 + \delta_2^2 \rangle$
- The UrQMD systems are largely influenced by non-flow effects
- \bullet Non-flow effects: $\delta \sim 1/M,\,M$ multiplicity in one event
- $c_2\{2\}$ is **positive**.

Y. Zhou et al, PRC 91, 064908 (2015)

ALICE results of c₂{4} becomes negative when centrality < 10%.
But, c₂{4} of UrQMD keeps positive at all centrality bins.

Y. Zhou et al, PRC 91, 064908 (2015)

- ALICE results of $c_2{4}$ becomes negative when centrality < 10%.
- But, $c_2{4}$ of UrQMD keeps **positive** at all centrality bins.
- UrQMD simulations for p+Pb collisions can not generate the collective flow!
- In p+Pb collisions, effects from initial state and/or QGP are needed to generate collective.

Where is the mass ordering from?

Y. Zhou et al, PRC 91, 064908 (2015)

• Hadronic interaction can generate a mass ordering for 2-particle correlations.

- Some unkown cross sections are calculated by the additive quark model
 - \Rightarrow cross sections of meson-baryon are ${\sim}50\%$ larger than meson-meson.

Summary

• Multiplicity, spectra, and elliptic flow for (multi-)strange hadrons

- VISHNU gives nicely discription of the multiplicity, spectra and elliptic flow in most of centrality bins.
- VISHNU nicely describes the mass ordering among π , K, p, and Ω , but fails among p, Λ and Ξ .

• Chemical and thermal freeze-out

- Ξ and Ω experience earlier chemical freeze-out.
- Thermal freeze-out is strongly hadron species dependent.
- Ξ and Ω also experience earlier thermal freeze-out, as expected, due to their much smaller hadronic cross sections.

• Correlations in p+Pb collisions

- Experimental results strongly indicate the development of collective flow.
- Hydrodynamics semi-quantitatively reproduce these experimental data
- UrQMD simulations shows hadronic interactions can not produce flow data measured in experiments; effects from initial state and /or QGP are needed
- v_2 mass-ordering is observed in UrQMD, which is the consequence of hadronic interactions and not necessarily associated with strong fluid-like expansions.

Summary

• Multiplicity, spectra, and elliptic flow for (multi-)strange hadrons

- VISHNU gives nicely discription of the multiplicity, spectra and elliptic flow in most of centrality bins.
- VISHNU nicely describes the mass ordering among π , K, p, and Ω , but fails among p, Λ and Ξ .

• Chemical and thermal freeze-out

- Ξ and Ω experience earlier chemical freeze-out.
- Thermal freeze-out is strongly hadron species dependent.
- Ξ and Ω also experience earlier thermal freeze-out, as expected, due to their much smaller hadronic cross sections.

• Correlations in p+Pb collisions

- Experimental results strongly indicate the development of collective flow.
- Hydrodynamics semi-quantitatively reproduce these experimental data
- UrQMD simulations shows hadronic interactions can not produce flow data measured in experiments; effects from initial state and /or QGP are needed
- v_2 mass-ordering is observed in UrQMD, which is the consequence of hadronic interactions and not necessarily associated with strong fluid-like expansions.

Thanks for your attention!

Backup

Baryon-antibaryon annihilations influence

A. Andronic et al., Nucl. Phys. A 904-905, 535c (2013).

H. Song et al., PRC 89, no. 3, 034919 (2014).

- Statistical Model does not include Baryon-antibaryon $(B-\overline{B})$ annihilations!
- $B-\bar{B}$ annihilations mainly reduce dN_p/dy and $dN_{\bar{p}}/dy$ by $\mathcal{O}(30\%)$.
- $B\mathchar`-B$ annihilations play an important role for a nice fit of the proton data.

Xiangrong Zhu (PKU)

Strangeness in Quark Matter 2015

η/s from viscous hydrodynamics

Specific shear viscosity η/s (how "perfect" is the created matter)

M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008).

- The mean value of η/s extracted is very small but existence.
- No finite chemical potential, bulk viscosity, heat flow, hadron cascades, three-dimensional fluid dynamic effects.

η/s from hybrid approaches

Specific shear viscosity η/s (how "perfect" is the created matter)

H. Song et al., Phys. Rev. Lett. 106, 192301 (2011).

- v_2/ε only depends on the viscosity.
- η/s is estamiated at $1 < 4\pi(\eta/s) < 2.5$.

Thermal freeze-out for identified hadrons

For comparisons, four simulations, hydro, hydro+Decay, hydro+UrQMD with and without $B-\bar{B}$, are done.

- 1. hydro: thermal freeze-out time distributions for all hadrons stop ${\sim}10~{
 m fm}/c.$
- 2. hydro+Decay: resonance decays \Rightarrow remarkable enhancement for π and p at before 10 fm/c and a long tail for π , K, p, Λ and Ξ after 10 fm/c.
- hydro+UrQMD: UrQMD hadronic scatterings broaden thermal freeze-out time distributions of all hadron species.

What is the difference among all particle species in hydro+UrQMD? Please see next ····

H. Song et al., PRC 89, no. 3, 034919 (2014).

VISHNU hybrid model gives a good discription of spectra for π , K, and p at central and semi-central collisions.

Elliptic flow for π , K, and p in Pb-Pb collisions

H. Song et al., PRC 89, no. 3, 034919 (2014).

• VISHNU gives a good discription of elliptic flow data for π , K and p.

Correlations from Initial States

K. Dusling and R. Venugopalan, Phys. Rev. D 87, no. 9, 094034 (2013)