Reference calculations for subthreshold \equiv production

Boris Tomášik
Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University in Prague, FNSPE, Czech Republic
boris.tomasik@umb.sk
work done in collaboration with
Evgeni Kolomeitsev and Dmitri Voskresensky
SQM, Dubna, 10.7.2015

Subthreshold production of Ξ

Measured by HADES Collaboration in $\mathrm{Ar}+\mathrm{KCl}$ at 1.76 AGeV [G. Agakichiev et al., Phys. Rev. Lett. 103 (2009) 132301]

$$
\frac{\mathcal{M}_{\Xi^{-}}}{\mathcal{M}_{\Lambda+\Sigma^{0}}}=\left(5.6 \pm 1.2_{-1.7}^{+1.8}\right) \times 10^{-3}
$$

whereas statistical models give $\sim 10^{-4}$
(But look also at [J. Steinheimer and M. Bleicher, arxiv:1503.07305], M. Bleicher on Monday)

This talk: minimal statistical model reference:

- get produced amount of strangeness from data
- statistically calculate distribution of $S=-1$ hadrons
- do volume averaging (centrality averaging) of the yields

A note on isospin symmetry

We assume the isospin symmetry holds from the initial state all the time

$$
\frac{K^{0}}{K^{+}}=\frac{K^{-}}{\bar{K}^{0}}=\frac{\bar{\Xi}^{-}}{\bar{\Xi}^{0}}=\frac{n}{p}=\eta=\frac{A-Z}{Z}=1.14
$$

this is used in extracting numbers of unseen strange particles

Kaons measure total strangeness content

- completely baryonic system \Rightarrow different behaviour of strange quarks and antiquarks
- strange antiquarks leave the system in kaons \Rightarrow kaon multiplicity measures produced strangeness

$$
\mathcal{M}_{s \bar{s}}=\mathcal{M}_{K^{+}}+\mathcal{M}_{K^{0}}=(1+\eta) \mathcal{M}_{K^{+}}
$$

- perturbative treatment of strangeness content:

$$
\mathcal{M}_{K^{+}}=(2.8 \pm 0.4) \times 10^{-2}
$$

- look at ratios independent on strangeness and baryon content:

$$
\frac{\mathcal{M}_{\Xi^{-}}}{\mathcal{M}_{K^{+}} \mathcal{M}_{\Lambda+\Sigma^{0}}}=0.20_{-0.12}^{+0.16}
$$

Minimal statistical model: Total strangeness content

- probability of $s \bar{s}$ production (at fixed impact parameter):

$$
W=\lambda V^{4 / 3}
$$

$V^{4 / 3}=$ volume \times time, λ is constant at given collision energy

- get λ from measured kaon multiplicity (note event (volume) averaging $\langle\ldots\rangle$)

$$
\lambda=\frac{\langle W\rangle}{\left\langle V^{4 / 3}\right\rangle}=\frac{\mathcal{M}_{K^{+}}(1+\eta)}{\left\langle V^{4 / 3}\right\rangle}
$$

- multiplicity distribution of $s \bar{s}$ pair

$$
P_{s \bar{s}}^{(n)}=e^{-W} \frac{W^{n}}{n!}
$$

expand for $n=1,2,3$ and insert λ (here appears volume averaging)

Statistical distribution of strange quarks

- probability to produce hadron a in event with n pairs $s \bar{s}$

$$
P_{a}^{(n)}=\left(z_{S}^{(n)}\right)^{s_{a}} V p_{a}=\left(z_{S}^{(n)}\right)^{s_{a}} V \frac{m_{a}^{2} T}{2 \pi} K_{2}\left(\frac{m_{a}}{T}\right)
$$

- normalisation $z_{S}^{(n)}$ differs for different numbers of $s \bar{s}$ pairs:
$n=1: \wedge, \Sigma, \bar{K}$
$n=2: \wedge, \Sigma, \equiv, \bar{K}$
$n=3: \wedge, \Sigma, \equiv, \Omega, \bar{K}$
- to get multiplicity: sum up contributions from all n 's and (afterwards) volume (impact parameter) average

$$
\mathcal{M}_{a}=\left\langle M_{a}^{(1)}+M_{a}^{(2)}+M_{a}^{(3)}\right\rangle
$$

- non-trivial volume averaging due to $P_{s \bar{s}}^{(n)}$

$$
M_{a}^{(n)} \propto P_{s \bar{s}}^{(n)}
$$

Minimal statistical model: Basic results

calculate all ratios independent of produced strangeness result for 三

Trigger to central collisions pushes this ratio down! (LVL1 trigger results in suppression about 1.77)

Variations of results: in-medium potentials

Scalar and vector potentials: $f\left(m_{a}, T\right) \rightarrow f\left(m_{a}+S_{a}, T\right) \exp \left(-V_{a} / T\right)$

$$
\begin{gathered}
V_{N}=V_{\Delta}=\frac{3}{2} V_{\Lambda}=\frac{3}{2} V_{\Sigma}=3 V=130 \mathrm{MeV} \frac{\rho_{B}}{\rho_{0}} \quad S_{N}=-190 \mathrm{MeV} \frac{\rho_{B}}{\rho_{0}} \\
S_{a}=\left(U_{a}-V_{a}\left(\rho_{0}\right)\right) \frac{\rho_{B}}{\rho_{0}} \quad U_{\Lambda}=-27 \mathrm{MeV} \quad U_{\Sigma}=24 \mathrm{MeV} \quad U_{\equiv}=-14 \mathrm{MeV} \\
U_{\bar{K}}=75 \text { or } 150 \mathrm{MeV}
\end{gathered}
$$

Statistical model prediction for $\mathrm{Au}+\mathrm{Au} @ 1.23 \mathrm{AGeV}$

The ratio $\mathcal{M} \equiv / \mathcal{M}_{\Lambda+\Sigma^{0}} / \mathcal{M}_{K^{+}}$is independent of the produced amount of strangeness!

Move from $\mathrm{Ar}+\mathrm{KCl}(A \sim 40)$ to $\mathrm{Au}+\mathrm{Au}(A \sim 200)$: increase of volume by factor 197/40 ~ 5.

$$
\frac{\mathcal{M}_{\equiv}}{\mathcal{M}_{\Lambda+\Sigma^{0}} \mathcal{M}_{K^{+}}}=\eta \frac{p_{\equiv} /\left(p_{\bar{K}}+p_{\Lambda}+p_{\Sigma}\right)}{\left(p_{\Lambda}+\frac{\eta p_{\Sigma}}{\eta^{2}+\eta+1}\right)} \frac{\left\langle V^{5 / 3}\right\rangle}{2\left\langle V^{4 / 3}\right\rangle^{2}} \propto \frac{1}{V}
$$

Decrease of the ratio by a factor of 5 in $\mathrm{Au}+\mathrm{Au}$ collision (independent of collision energy, at subthreshold energies)

A note on comparison with canonical statistical model

Minimal statistical model

- exact strangeness conservation
- amount of produced strangeness parametrised through coefficient λ
- amount of strangeness proportional to $V^{4 / 3}$
- averaging over different volumes

Canonical statistical model

- exact strangeness conservation
- amount of produced strangeness parametrised through canonical volume
- amount of strangeness proportional to $V_{\text {can }}$
- single effective volume for all events in the sample

Production of ミ: speculations

- once produced, 三 must decouple from the system
- most viable are strangeness recombination reactions
- with lowering \bar{K} mass the $\bar{\Xi}^{*}$ resonance in $\bar{K} N$ channel can be reached
- cross sections parametrised in
B. Tomášik, E.E. Kolomeitsev, Acta Phys. Pol. B Proc. Suppl. 2 (2012) 201

Conclusions

- minimal statistical model (these issues are there in Nature):
- exact strangeness conservation
- statistical distribution of s quarks
- $V^{4 / 3}$-dependence of produced strangeness
- averaging over impact parameter
- even stronger underestimation of \equiv production
- take into account trigger effects
- medium modification of masses is not enough to explain data
- prediction for $\mathrm{Au}+\mathrm{Au}: \mathcal{M}_{\equiv} / \mathcal{M}_{\Lambda+\Sigma^{0}} / \mathcal{M}_{K^{+}} 5$ times smaller than $\mathrm{Ar}+\mathrm{KCl}$
- there must be non-equilibrium \equiv production
E.E. Kolomeitsev, B. Tomášik, D.N. Voskresensky, Phys. Rev. C 86 (2012) 054909
B. Tomášik and E.E. Kolomeitsev, Acta Phys. Pol. B Proc. Suppl. 5 (2012) 201
E.E. Kolomeitsev et al., PoS(Baldin ISHEPP XXII)071 (arXiv:1502.05437)

Backup: volume factors in probabilities

Expanded probabilities to have n pairs $s \bar{s}$:

$$
\begin{aligned}
& P_{s \bar{s}}^{(1)}=\lambda V^{4 / 3}-\lambda^{2} V^{8 / 3}+\frac{1}{2} \lambda^{3} V^{4}+O\left(\lambda^{4}\right), \\
& P_{s \bar{s}}^{(2)}=\frac{1}{2} \lambda^{2} V^{8 / 3}-\frac{1}{2} \lambda^{3} V^{4}+O\left(\lambda^{4}\right), \\
& P_{s \bar{s}}^{(3)}=\frac{1}{6} \lambda^{3} V^{4}+O\left(\lambda^{4}\right) .
\end{aligned}
$$

