

Resonance production in pp, p-Pb and Pb-Pb collisions measured by ALICE at the LHC

Viktor Riabov, PNPI, Gatchina, Russia for the ALICE collaboration

JOINT INSTITUTE FOR NUCLEAR RESEARCH Strangeness in Quark Matter 06 July - 11 July 2015

Outline

- Motivations
- Results on K^{*0} and \$\phi\$ production in pp, p-Pb and Pb-Pb:
 - ✓ $p_{\rm T}$ spectra, < $p_{\rm T}$ >, dN/dy
 - \checkmark particle ratios
 - \checkmark nuclear modification factors
- Summary & Outlook

Motivation

- Resonances are excited hadronic states with lifetimes comparable to that of the fireball
- Copiously produced and measurable in different collision systems even at top multiplicities
- pp: baseline measurements, tests of QCD
- p-Pb: nPDFs, parton rescattering, onset of collectivity
- Pb-Pb: properties of hot and dense matter
 - \checkmark parton energy loss, flavor dependence
 - \checkmark baryon anomaly, hydro vs. recombination
 - ✓ hadronic phase: lifetime, density
 - \checkmark chiral symmetry partial restoration, mass/width modifications
 - → ALICE does not observe any significant modifications of K^{*0} and ϕ line shapes from pp to central Pb-Pb collisions

Resonance reconstruction

- Hadronic decays with large BR and charged particles in the final state
 ✓ φ→K⁺K⁻ (BR ~ 49 %); K^{*0}→π⁺⁻K⁻⁺ (BR ~ 67%)
- Different collision systems and energies:
 - ✓ pp at $\sqrt{s} = 2.76$ and 7 TeV
 - ✓ p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, different multiplicities
 - ✓ Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV, different centralities

$K^{\ast 0}$ and ϕ spectra in pp collisions

- First measurement of ϕ meson production at high $p_{\rm T}$, up to 21 GeV/c in pp@2.76 TeV
- Pythia and Phojet are consistent with a measurement at high $p_{\rm T}$
- ϕ and K^{*0} production was previously measured in pp@7 TeV (Eur.Phys.J. C72:2183, 2012)
- Used as a reference for calculation of nuclear modification factors (R_{pPb} and R_{AA})

$K^{\ast 0}$ and ϕ spectra in p-Pb@5.02 TeV

 $K^{*0} \rightarrow \pi^{+-} K^{-+}$

- K^{*0} and ϕ production is measured in a wide p_T range:
 - ✓ K^{*0} : 0-15 GeV/*c* (TPC + TOF PID)
 - ✓ ϕ : 0.2-3 GeV/c (TPC + TOF PID) + 3-16(21) GeV/c (no PID)
- Measurements performed in different multiplicity bins

K^{*0} and ϕ spectra in Pb-Pb@2.76 TeV

- 2010 Pb-Pb data analysis: $p_{\rm T} \le 5 \text{ GeV}/c$
- 2011 Pb-Pb data analysis: extends $p_{\rm T}$ coverage up to 21 GeV/c for ϕ

Mean $p_{\rm T}$: Pb-Pb collisions

- Mass ordering of $\langle p_T \rangle$ is observed
- $< p_T >$ for K^{*0}, ϕ and p is similar in central collisions \rightarrow consistent with hydro
- Splitting of $\langle p_T \rangle$ in peripheral collisions, protons are lower
- $< p_T >$ increases by 20% for mesons and by 50% for protons from peripheral to central

Mean p_T : pp, p-Pb and Pb-Pb collisions

- Approximate mass ordering but <p_T> for K^{*0} and φ is larger than for protons
 → baryon/meson difference ?
- $< p_T >$ in p–Pb increases more rapidly with multiplicity than in Pb–Pb
- In highest multiplicity p-Pb collisions <p_T> reaches similar values to central Pb−Pb
 → stronger radial flow, different particle production mechanisms ?

Particle ratios and hadronic phase

- Reconstructed resonance yields in heavy ion collisions are defined by:
 - ✓ resonance yields at chemical freeze-out
 - \checkmark hadronic processes between chemical and kinetic freeze-outs
 - \rightarrow rescattering of daughter particles (loss of signal)
 - → regeneration: $\pi K \rightarrow K^{*0}$, $KK \rightarrow \phi$ etc. (increased yields)
- Effect of hadronic processes depends on:
 - \checkmark lifetime of hadronic phase
 - ✓ resonance lifetime
 - ✓ scattering cross sections
- Resonances with lifetimes comparable to that of the fireball are a very promising tool to study properties of the hadronic phase

	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	\$ (1020)
cτ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_{\pi}\sigma_{\Lambda}$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$

UrQMD: rescattering and regeneration are most prominent at p_T < 2 GeV/c
 → focus is on low p_T measurements

Particle ratios: K^{*0}/K , ϕ/K

SQM-2015

- - \checkmark no strong centrality dependence
 - ✓ consistent for pp, p-Pb and Pb-Pb
 - ✓ consistent with thermal models*
- K^{*0}/K:
 - significant suppression going from pp and peripheral Pb-Pb to central Pb-Pb collisions
 - ✓ Central Pb-Pb results are inconsistent with thermal models [1]
- Drop of K^{*0}/K ratio is consistent with expectations from rescattering of decay products in hadronic phase
- No such effect for φ/K because of much longer lifetime, τ(φ) >> τ(K^{*0})

Hadronic phase

- Simple model:
 - ✓ all K^{*0} that decayed before kinetic freeze-out are lost due to rescattering
 - $\checkmark\,$ regeneration and time dilation are ignored
 - ✓ Yield(central Pb-Pb) = Yield(pp)·exp(- $\Delta t/\tau$), $\tau = 4.16$ fm/*c* → $\Delta t = 2.25\pm0.75$ fm/*c*
 - ✓ Lower limit for hadronic phase lifetime: $\Delta t > 1.5 \text{ fm/}c$

- More advanced models [1,2] couple particle ratios to temperature and hadronic phase lifetime Δt:
 - ✓ T = 156 MeV from thermal fits ✓ K^{*0}/K= 0.2 ±0.01 (stat) ± 0.03 (syst) → $\Delta t > 2 \text{ fm/}c$

[1] G. Torrieri and J. Rafelski, J. Phys. G 28, 1911 (2002)
[2] C. Markert et al., arXiv:hep-ph/0206260v2 (2002)

Intermediate $p_{\rm T}$ range

SQM-2015

- Baryon anomaly region manifested in increased p/π and Λ/K_s^0 ratios at RHIC and the LHC
- Driving force of enhancement is not yet fully understood:
 - ✓ particle mass (hydro)?
 - ✓ quark count (baryons vs. mesons)?
- \$\overline{0}\$ and \$K^{*0}\$ are well suited for tests as mesons with masses very close to that of a proton:

$$\checkmark \Delta m_{\phi} \sim 80 \text{ MeV}/c^2$$
, $\Delta m_{K^*0} \sim -45 \text{ MeV}/c^2$

Particle ratios: $p/\phi(p_T)$, $p/K^{*0}(p_T)$

- Both ratios, p/φ(p_T) and p/K^{*0}(p_T) show clear centrality dependence and flattening in most central Pb-Pb collisions
 →similar spectral shapes of p, K^{*0} and φ
 - \rightarrow shapes are determined by masses
- p/ϕ in p-Pb 0-5% indicates flattening of the ratio at $p_T < 1.5$ GeV/*c*
 - \rightarrow onset of collective behaviour in p-Pb?

Nuclear modification factors

- Nuclear modification factor: $R_{AA}(p_T) = \frac{Yield_{A-A}(p_T)}{Yield_{pp}(p_T) \cdot N_{coll}}$
- p-Pb:
 - ✓ R_{pPb} ~ 1 at high p_T > 6-8 GeV/c
 - ✓ Cronin enhancement at intermediate $p_{\rm T}$
 - ✓ species dependence of enhancement
 → mass or baryon/meson effect ?
 - magnitude of enhancement is smaller at the LHC compared to RHIC and SPS
- Pb-Pb:
 - hadrons are similarly suppressed at $p_{\rm T} > 10 \text{ GeV}/c$
 - species dependence of R_{AA} at intermediate p_T
 - R_{AA} of \$\phi\$ approaches R_{AA} of proton as centrality evolves from central to peripheral collisions
 - In most central collisions difference of R_{AA} for φ and p is governed by difference of pp references (p/φ ratio is flat)

SQM-2015

Summary

 K^{*0} and ϕ have been measured in a wide momentum range in pp, p-Pb and Pb-Pb collisions at the LHC, as a function of multiplicity (centrality)

- ✓ In pp, p-Pb and Pb-Pb we observe clear evolution of production spectra shapes with multiplicity reflected in change of $< p_T >$. In pp and p-Pb $< p_T >$ for resonances does not follow the mass ordering while it is the case for central Pb-Pb.
- ✓ We observe signs of rescattering effect in the hadronic phase, K^{*0}/K ratio is significantly suppressed in central Pb-Pb while ϕ /K ratio stays unchanged. Lower limit for the hadronic phase lifetime $\Delta t > 1.5-2$ fm/c.
- ✓ p/ ϕ and p/K^{*0} ratios indicate that shapes of particle spectra are mostly defined by particle masses that is consistent with hydrodynamical models. The flattening of p/ ϕ in central p-Pb at low $p_{\rm T}$ can be a hint of onset of collective effects usually expected for heavy ion collisions.
- ✓ In central Pb-Pb production of all hadrons is similarly suppressed at high transverse momentum.
- ✓ In p-Pb we observe a species dependent Cronin effect at intermediate p_T similar to that observed at lower collision energies at RHIC and SPS but smaller in amplitude.

Backup slides

ALICE experiment

Outlook

- New analyses are ongoing in pp, p-Pb and Pb-Pb using available data sets:
 - ✓ finalizing high- $p_{\rm T}$ results for ϕ and K*0
 - ✓ new resonances: ρ , Λ^* , $\Sigma^{*\pm}$, Σ^0 , Ξ^{*0} having different lifetimes
 - \rightarrow better understanding of hadronic phase, parton energy loss, baryon anomaly ...

- New data samples in Run2:
 - ✓ hotter and denser matter
 - \checkmark smaller uncertainties from larger data sets

Comparison to RHIC

- Results for ρ and Λ^* are coming soon
- Particle ratios compared to model predictions can help to better understand properties of the hadronic phase

Particle ratios: $p/\phi(p_T)$, $p/K*0(p_T)$

- Both ratios, p/φ(p_T) and p/K*0(p_T) show clear centrality dependence and flattening in most central Pb-Pb collisions
 → similar spectral shapes of p, K*0 and φ
 → shapes are determined by masses
- Similar flattening for $p/\phi(p_T)$ at lower $\sqrt{s_{NN}}$ at RHIC although in narrower p_T range

ϕ And K^{*0} in pp@7

SQM-2015

Nuclear modification factor: R_{pA}

Figure 9.8: W-to-Be ratio of per-nucleon cross sections, $R_{W/Be}$ vs p_T for each hadron species at $\sqrt{s} = 38.8$ GeV from [7]. Also shown are results from [6] at $\sqrt{s} = 27.4$ GeV and model calculations [109] for π^- at $\sqrt{s} = 27.4$ GeV (upper curve) and $\sqrt{s} = 51.3$ GeV (lower curve).

23