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The modern pattern of multi-particle production in (most central) heavy ion 
collisions at RHIC and LHC agrees with the formation of hot strongly-
interacting matter with hydrodynamical properties (“quark-gluon fluid”), 
which absorbs energetic quarks and gluons due to their multiple scattering and 
medium-induced energy loss.
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Within such paradigma, a number of questions on heavy flavours arise: 
 

● Are heavy quarks thermalized in quark-gluon plasma?  
● What is the mass dependence of medium-induced quark energy loss?
● Are charmed hadrons (D, J/ψ) in a kinetic equilibrium with the medium? 
● How the specific pattern of quarkonium suppression related to the interplay  

between thermal and non-thermal mechanisms of J/ψ meson production?
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● Are heavy quarks thermalized in quark-gluon plasma?  
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● Are charmed hadrons (D, J/ψ) in a kinetic equilibrium with the medium? 
● How the specific pattern of quarkonium suppression related to the interplay  

between thermal and non-thermal mechanisms of J/ψ meson production?

In this talk,  I'll present some results of the phenomenological analysis of 
LHC data on p

T
-spectra and elliptic flow of charmed hadrons (D, J/ψ) in 

PbPb collisions at √s
NN

=2.76 TeV in the frameworks of two-component 

HYDJET++ model. The comparision with RHIC results is also discussed. 

The modern pattern of multi-particle production in (most central) heavy ion 
collisions at RHIC and LHC agrees with the formation of hot strongly-
interacting matter with hydrodynamical properties (“quark-gluon fluid”), 
which absorbs energetic quarks and gluons due to their multiple scattering and 
medium-induced energy loss.



HYDJET and HYDJET++ 
relativistic heavy ion event generators              

HYDJET (HYDrodynamics + JETs) - event generator to simulate heavy ion 
event as merging of two independent components (soft hydro-type part + hard  
multi-partonic state, the latter is based on PYQUEN - PYthia QUENched).

http://cern.ch/lokhtin/hydro/hydjet.html              (latest version 1.9)

Original paper: I.Lokhtin, A.Snigirev,  Eur. Phys. J. C 46 (2006) 2011 

______________________________________________________
 
HYDJET++ (HYDJET v.2.*) – continuation of HYDJET (identical hard 
component + improved soft component including full set of thermal 
resonance  production). 

http://cern.ch/lokhtin/hydjet++                              (latest version 2.2)

Original paper: I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, 

K.Tywoniuk, Comp. Phys. Comm. 180 (2009) 779        
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HYDJET++ (soft component): physics frames 

✔  fast HYDJET-inspired MC procedure for soft hadron  generation 
✔  multiplicities are determined assuming thermal equilibrium 
✔  hadrons are produced on the hypersurface represented by a parameterization 

    of relativistic hydrodynamics with given freeze-out conditions 
✔  chemical and kinetic freeze-outs are separated 
✔  decays of hadronic resonances are taken into account (360 particles from 

    SHARE data table) with “home-made'' decayer     
✔  written within ROOT framework (C++)
✔  contains 16 free parameters (but this number may be reduced to 9)  

Soft (hydro) part of HYDJET++ is based on the adapted FAST MC model: 
Part I: N.S.Amelin, R.Lednisky, T.A.Pocheptsov, I.P.Lokhtin, L.V.Malinina,  
A.M.Snigirev,  Yu.A.Karpenko,  Yu.M.Sinyukov, Phys. Rev. C 74 (2006) 064901 
Part II: N.S.Amelin, R.Lednisky, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko,  
Yu.M.Sinyukov, I.C.Arsene, L.Bravina,  Phys. Rev. C 77 (2008)  014903
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       HYDJET++ (soft): input parameters  

1-5.  Thermodynamic parameters at chemical freeze-out: Tch
 
, {µ

B
, µ

S
, µ

C
,µ

Q
} (option  to calculate 

Tch, µ
B
 and µ

s
 using phenomenological parameterization  µ

B
(√s), Tch( µ

B
) is foreseen). 

6-7.  Strangeness suppression factor γ
S
 ≤ 1 and charm enchancement factor  γ

c
 ≥ 1 (options to 

use phenomenological parameterization  γ
S
 (Tch, µ

B
) and to calculate  γ

c
 are foreseen).

8-9.  Thermodynamical parameters at thermal freeze-out:  Tth , and µ
π
- effective chemical 

potential of positively charged pions.

10-12. Volume parameters at thermal freeze-out: proper time τ
f 
, its standard deviation 

(emission duration) Δτ
f 
, maximal transverse radius R

f 
.

13. Maximal transverse flow rapidity at thermal freeze-out ρ
u

max .

14. Maximal longitudinal flow rapidity at thermal freeze-out ηmax . 

15. Flow anisotropy parameter: δ(b) → uμ = uμ (δ(b),φ)

16. Coordinate anisotropy: ε(b) → Rf(b)=Rf(0)[Veff(ε(0),δ(0))/Veff(ε(b),δ(b))]1/2[Npart(b)/Npart(0)]1/3

For impact parameter range bmin-bmax:  
Veff(b)=Veff(0)Npart(b)/Npart(0),   τf(b)=τf(0)[Npart(b)/Npart(0)]1/3
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HYDJET++ (hard component): 
PYQUEN (PYthia QUENched)

                  Initial parton configuration  
            PYTHIA6.4  w/o hadronization: mstp(111)=0 

             Parton hadronization and final particle formation 
           PYTHIA6.4  with hadronization: call PYEXEC  

↓

↓

Parton rescattering & energy loss (collisional, radiative) + emitted g 
 PYQUEN rearranges partons to update ns strings

Three model parameters: initial maximal QGP temperature T
0
, QGP formation time 

τ
0
 and number of active quark flavors in QGP N

f
 

(+ minimal p
T 
of hard process P

T min
 to specify the number of hard NN collisions)

I.P.Lokhtin, A.M.Snigirev, Eur. Phys. J. 45 (2006) 211 (latest version 1.5.1) 
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1) Thermal charm production in HYDJET++ (soft component)

Thermal charmed hadrons J/ψ, D0, D0, D+, D- , D
s

+, D
s

-, Λ
c
+, Λ

c
- are 

generated within the statistical hadronization model 
(A.Andronic, P.Braun-Munzinger, K.Redlich, J.Stachel, 

Phys.Lett. B 571 (2003) 36; Nucl. Phys. A 789 (2007) 334)

N
D
=γ

c
N

D

th(I
1
(γ

c
N

D

th)/I
0
(γ

c
N

D

th)),         N
J/ψ

=γ
c

2 N
J/ψ

th

γ
c 
 - charm enhancement factor may be obtained from the equation: 

N
cc

=0.5γ
c
N

D

th(I
1
(γ

c
N

D

th)/I
0
(γ

c
N

D

th))+γ
c

2 N
J/ψ

th

where number of c-quark pairs N
cc 

is calculated with PYTHIA 

(the factor K~2 is applied to take into account NLO pQCD corrections)

and multiplied by the number of NN sub-collisions for given centrality

 

-
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2) Non-thermal charm production in HYDJET++ (hard component)
Non-thermal charmed hadrons are generated within 

PYTHIA/PYQUEN taking into account medium-induced rescattering 
and radiative and collisional energy loss of heavy quarks (b, c) 



Points: PHENIX data PRL 98 (2007) 232301); histograms: HYDJET++ 
 

If thermal freeze-out for J/ happens at the same temperature as for inclusive hadrons,  
T

th
=100 MeV (ηmax =3.3, 

u

max =1.1) then simulated spectra are much wider than the data 
11

Charmed mesons at RHIC (J/ψ) 
I.P. Lokhtin et al., J.Phys.Conf.Ser. 270 (2011) 012060  

γ
c
=7 0-20%



Points: PHENIX data PRL 98 (2007) 232301); histograms: HYDJET++ 
 

But if thermal freeze-out for J/ happens at the same temperature as chemical freeze-out, 
T

th
(J/)=T

ch
=165 MeV (ηmax =1.1, 

u

max =0.5), then simulated spectra match the data      
12

Charmed mesons at RHIC (J/ψ)  

γ
c
=7 0-20%

I.P. Lokhtin et al., J.Phys.Conf.Ser. 270 (2011) 012060  



Points: STAR data PRL 113 (2014) 142301); histograms: HYDJET++ 
 

Simulated p
T
-spectrum match the data if freeze-out parameters for D are the same as 

for J/: T
th
=T

ch
=165 MeV (ηmax =1.1, 

u

max =0.5)    
13

Charmed mesons at RHIC (D)  
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Charmed mesons at RHIC (summary)  

 
● Momentum spectra of D and J/ψ mesons in most central AuAu 

collisions may be reproduced by two-component model including 
thermal (soft) and non-thermal (hard) components with the same 
freeze-out parameters

● Thermal freeze-out of charmed mesons happens appreciably before 
thermal freeze-out of light hadrons, presumably at chemical 
freeze-out (with reduced radial & longitudinal collective velocities)

● Thus D and J/ψ mesons seem not to be in a kinetic equilibrium with 
the created medium

What about charmed mesons at the LHC?  
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D mesons at LHC (p
T
-spectrum)  

Points: ALICE data (JHEP 1209 (2012) 112); histograms: HYDJET++ 
(T

th
= 105 MeV, T

ch
= 165 MeV, ηmax = 4.5, 

u

max = 1.265, γ
c
= 11.5, P

T min
= 8.2 GeV/c) 

 
HYDJET++ reproduces pT-spectrum of D-mesons with the same freeze-out parameters as for 

inclusive hadrons ⇒ significant part of D-mesons (thermal component) is in the kinetic 
equilibrium with the medium; non-thermal component is important at high pT

PbPbPbPb
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D mesons at LHC (elliptic flow v
2 
= <cos(2φ-ψ

R
)>)  

Points: ALICE data (PRC 90 (2014) 034904)); histograms: HYDJET++ 
 

HYDJET++ reproduces v
2
(pT) of D-mesons with the same freeze-out parameters as for inclusive 

hadrons ⇒ significant part of D-mesons (thermal component) is in the kinetic equilibrium with 
the medium; non-thermal component is important at high pT

PbPbPbPb PbPbPbPb

PbPb PbPb
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D mesons at LHC (nuclear modification factor R
AA

)  

Points: ALICE data (JHEP 1209 (2012) 112); 
histograms: HYDJET++ 

 
HYDJET++ reproduces RAA(pT) of D-mesons 
up to very high p

T
 ⇒ treatment of heavy quark 

energy loss in hard component of HYDJET++ 
(PYQUEN) seems quite successful  

R AA=
σ pp

inel

〈N coll 〉

d2 N AA/dpT dη

d 2σ pp/dpT dη
“QCD Medium”~
“QCD Vacuum“

RAA>1: enhancement
RAA=1: no medium effect
RAA<1: suppression

PbPbPbPb PbPbPbPb

PbPbPbPb
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D mesons at LHC (nuclear modification factor R
AA

)  

Points: ALICE data (JHEP 1209 (2012) 112); histograms: HYDJET++ 
 

HYDJET++ reproduces RAA(pT) of D-mesons up to very high p
T
 ⇒ treatment of heavy quark 

energy loss in hard component of HYDJET++ (PYQUEN) seems quite successful  

dηdpσd

dηdpNd

N

σ
=R

Tpp

TAA

coll

inel
pp

AA /

/
2

2
“QCD Medium”~
“QCD Vacuum“

RAA>1: enhancement
RAA=1: no medium effect
RAA<1: suppression

PbPbPbPb



23

J/ψ mesons at LHC (p
T
-spectrum)  

Points: ALICE data (arXiv:1506.08804); histograms: HYDJET++
(T

th
= T

ch
= 165 MeV, ηmax = 2.3, 

u

max = 0.6, γ
c
= 11.5, P

T min
= 3.0 GeV/c)  

 
HYDJET++ reproduces J/ψ-meson p

T-
spectrum (up to ~3 GeV/c) with the freeze-out parameters 

different from ones for inclusive hadrons ⇒ kinetic freeze-out of  J/ψ thermal component occurs 
before freeze-out of light hadrons; non-thermal component is important at intermediate & high pT

PbPbPbPb
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J/ψ mesons at LHC (nuclear modification factor R
AA

)  

Points: ALICE data (PLB 734 (2014) 314); histograms: HYDJET++ 
 

Superposition of thermal and non-thermal components in HYDJET++ allows us qualitatively
 to reproduce momentum dependence of J/ψ suppression factor in PbPb collisions at the LHC

(but PYTHIA@HYDJET++ tuning is needed for adequate J/ψ modeling at high p
T
)  

dηdpσd

dηdpNd

N

σ
=R

Tpp

TAA

coll

inel
pp

AA /

/
2

2
“QCD Medium”~
“QCD Vacuum“

RAA>1: enhancement
RAA=1: no medium effect
RAA<1: suppression

PbPbPbPb
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J/ψ mesons at LHC (elliptic flow v
2 
= <cos(2φ-ψ

R
)>)  

Points: ALICE data (PRL 111 (2013) 162301); histograms: HYDJET++ 
 

HYDJET++ reproduces v
2
(pT) of J/ψ-mesons with the freeze-out parameters different from ones 

for inclusive hadrons ⇒ kinetic freeze-out of  J/ψ thermal component occurs appreciably before 
freeze-out of light hadrons; non-thermal component is important at intermediate & high pT

PbPbPbPb
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● Momentum spectra and elliptic flow of D and J/ψ mesons in PbPb  
collisions may be reproduced by two-component model including 
thermal (soft) and non-thermal (hard) components (D-mesons - with 
the same f.-o. parameters as for inclusive hadrons, J/ψ mesons – no).
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in a kinetic equilibrium with the medium, while J/ψ mesons – not yet. 
Taking into account non-thermal production mechanism & in-medium 
heavy quark energy loss are important at high transverse momenta. 
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Charmed mesons at LHC (summary)  
 

● Momentum spectra and elliptic flow of D and J/ψ mesons in PbPb  
collisions may be reproduced by two-component model including 
thermal (soft) and non-thermal (hard) components (D-mesons - with 
the same f.-o. parameters as for inclusive hadrons, J/ψ mesons – no).

● Thermal freeze-out of D-mesons happens simultaneously with thermal 
freeze-out of light hadrons;  thermal freeze-out of J/ψ-mesons
happens appreciably before thermal freeze-out of light hadrons,
presumably at chemical freeze-out (with reduced radial & longitudinal 
collective velocities, and enhanced non-thermal contribution).

● Thus the significant part of D mesons (up to p
T
~4 GeV/c) seems to be 

in a kinetic equilibrium with the medium, while J/ψ mesons – not yet. 
Taking into account non-thermal production mechanism & in-medium 
heavy quark energy loss are important at high transverse momenta. 

High degree of c-quark thermalization in quark-gluon plasma is 
achieved in PbPb collisions at the LHC (?)    



BACKUP   SLIDES
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b
2R ~ 15 fm

Физика столкновений 
релятивистских ядер

Participant Region Spectators

Spectators

Центральные столкновения, b = 0

Периферические столкновения, b  2R

Centrality of nucleus-nucleus 
interactions

32

central collision peripheral collision



  

Azimuthal correlations and flow

beam

(contains the 
impact parameter)

participants

Event plane

Elliptic flow Triangular flow

Reaction 
plane

2
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●Calculating the number of hard NN sub-collisions Njet (b, Ptmin, √s) 

with Pt>Ptmin around its mean value according to the binomial 
distribution.  

●Selecting the type (for each of Njet) of hard NN sub-collisions (pp, np 
or nn) depending on number of protons (Z) and neutrons (A-Z) in  
nucleus A according to the formula: Z=A/(1.98+0.015A2/3).

●Generating the hard component by calling PYQUEN njet times.
● Correcting the PDF in nucleus by the accepting/rejecting procedure 

for each of Njet hard NN sub-collisions: comparision of random 
number generated uniformly in the interval [0,1] with shadowing 
factor S(r1,r2,x1,x2,Q2) ≤ 1 taken from the adapted impact parameter 
dependent parameterization based on Glauber-Gribov theory 
(K.Tywoniuk et al.,, Phys. Lett. B 657 (2007) 170).

Monte-Carlo simulation of hard component (including 
nuclear shadowing) in HYDJET++
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HYDJET++ (soft):  main physics assumptions 

A hydrodynamic expansion of the fireball is supposed ends by a sudden 
system breakup at given T and chemical potentials. Momentum distribution of 
produced hadrons keeps the thermal character of the equilibrium distribution. 

 Cooper-Frye formula:

-  HYDJET++ avoids straightforward 6-dimensional integration  by using the 
special  simulation procedure (like HYDJET): momentum generation in the rest 
frame of fluid element, then Lorentz transformation in the global frame → 
uniform weights → effective von-Neumann rejection-acception procedure.

-
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Freeze-out surface parameterizations
1. The Bjorken model with hypersurface

  2. Linear transverse flow rapidity profile                                        
3. The total effective volume for particle  production at 
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HYDJET++ (soft): hadron multiplicities
1. The hadronic matter created in heavy-ion collisions is considered as a 

hydrodynamically expanding fireball with EOS of an ideal hadron gas.

2.  “Concept of effective volume” T=const and µ=const: the total yield of 
particle species is                              .      

3.  Chemical freeze-out : T, µi = µB Bi + µS Si + µc Ci +  µQ Qi ; T, µB –can be 
fixed by particle ratios, or  by phenomenological formulas

4. Chemical freeze-out: all macroscopic characteristics of particle system are 
determined via a set  of equilibrium distribution functions in the fluid 
element rest frame:
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HYDJET++ (soft): 
thermal and chemical freeze-outs

1. The particle densities at the chemical freeze-out stage are too high to consider
 particles as free streaming and to associate this stage with the thermal freeze-out 

2.   Within the concept of chemically frozen evolution, assumption of the 
conservation of the particle number ratios from the chemical to thermal freeze-out : 

3.  The absolute values                              are determined by the choice 
of the  free parameter of the model: effective pion chemical potential             at              
Assuming  for the other particles (heavier then pions) the Botzmann approximation :   

Particle momentum spectra are generated on the thermal freeze-out hypersurface, the hadronic 
composition at this stage is defined by the parameters of the system at chemical freeze-out
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Anisotropic flow generation in  HYDJET++   
(soft component)

L.V. Bravina et al., EPJC 74 (2014) 2807 



Anisotropic flow generation in  HYDJET++   
(soft component)

φu : azimuthal angle of fluid velocity
φ  : spatial azimuthal angle  

Spatial anisotropy Momentum anisotropy

Elliptic flow v2

 spatial modulation of freeze-out surface 
 fluid velocity modulation  

R(b) – surface radius

Triangular flow v3

Spatal modulation of freeze-out surface as cos(3φ) with independent phase 
Ψ3 and parameter ε3 

 Three parameters ε(b0), ε3
(b0) и δ(b0) is tuned to fit the data  
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Medium-induced partonic rescattering 
and energy loss («jet quenching»)

Collisional loss  
(high momentum transfer 

approximation)

Radiative loss  
(BDMPS model,

coherent radiation)
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General kinetic integral equation: 

1. Collisional loss and elastic scattering cross section: 

2. Radiative loss (BDMPS): 

“dead cone” approximation for massive quarks: 

 E L ,E =∫
0

L

dx
dP
dx

x  x
dE
dx

x ,E ,
dP
dx

x =
1

 x
exp −x /x 

dE
dx

mq=0=
2s CF

L
∫

ELPM~ gD
2

E

d [1− y
y2

2 ]ln∣cos 1 1∣, 1=i1− y
C F

3
y2k ln

16
k

, k=
 D

2
g

1− y 
, 1=

 L

2g

, y=


E
, CF=

4
3

dE
dx

mq≠0=
1

1l
3/2 

2

dE
dx

mq=0 , l= D
2 

1/3

mq

E 
4/3

dE
dx

=
1

4T
∫
D

2

tmax

dt
d
dt

t ,
d
dt

≃C
2 s

2
t 

t 2 , S=
12

33−2N f ln t /QCD
2


, C=9/ 4gg , 1gq , 4/9 qq 

PYQUEN: physics frames
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Nuclear geometry and QGP evolution 
impact parameter b≡ |O

1
O

2
| - transverse distance between nucleus centers

Space-time evolution of QGP, created in region of initial overlaping of colliding nuclei, is 
descibed by Lorenz-invariant Bjorken's hydrodynamics J.D. Bjorken, PRD 27 (1983) 140

(r
1
,r

2
)  T

A
(r

1
) ∗ T

A
(r

2
)  (T

A
(b) - nuclear thickness function) 
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Monte-Carlo simulation of parton rescattering and 
energy loss in PYQUEN

● Distribution over jet production vertex V(r cos, r sin) at im.p. b      
                                                                                                                 
                                                                                              

● Transverse distance between parton scatterings  l
i
=(

i+1
-

i
) E/p

T
           

                                                                                                                 
                                                                       

● Radiative and collisional energy loss per scattering                               
                                                                                                                 
                                                                                                          

● Transverse momentum kick per scattering               

dN
d dr

b=
T A r 1T A r2

∫
0

2

d∫
0

r max

rdrT A  r1T A r 2

dP
dli

=−1 i1exp−∫
0

li

−1 is ds , −1= 

 E tot , i= Erad , i Ecol , i

 kt ,i
2
=E− t i

2m0i


2

−p− E
p

t i

2m0i

−
t i

2p 
2

−mq
2
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Radiative loss, three options (simple parametrizations) for angular 
distribution of in-medium emitted gluons:

Collinear radiation            θ=0

Small-angular radiation 

Wide-angular radiation 

Collisional loss always “out-of-cone” (energy is absorbed by medium) 

dN g

d θ
∝sinθexp(

−(θ−θ0)
2

2θ0
2 ) , θ0∼5o

dN g

d θ ∝
1
θ

Angular structure of energy loss in PYQUEN
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Charged multiplicity vs. centrality and pseudorapidity 

Open points:  ALICE  data (PRL 106 (2011) 032301), closed points: CMS data (JHEP 1108 (2011) 141);  
histograms: HYDJET++ 

 
Tuned HYDJET++ reproduces multiplicity vs. event centrality (down to very peripheral events) 

with contribution of hard component to multiplicity in mid-rapidity 
for central PbPb  ~30%, as well as approximately flat pseudorapidity distribution.

.

PbPbPbPbPbPb PbPb
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PbPbPbPb

PbPb PbPb

I.P. Lokhtin et al., EPJC 72(2012) 2045 



PT-spectrum and RAA for inclusive charged hadrons

Points: ALICE (left) (PLВ 696 (2011) 30) & CMS (right) (EPJ C 72 (2012) 1945) data;
 histograms: HYDJET++ 

HYDJET++ reproduces pT-spectrum and R
AA

 for central PbPb in mid-rapidity up to pT~100 GeV/c 

.

|η|<0.8 |η|<1.0 
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0-5% 0-5% 

dηdpσd

dηdpNd

N

σ
=R

Tpp

TAA

coll

inel
pp

AA /

/
2

2
“QCD Medium”~
“QCD Vacuum“

RAA>1: enhancement
RAA=1: no medium effect
RAA<1: suppression

PbPbPbPb PbPbPbPb

I.P. Lokhtin et al., EPJC 72(2012) 2045 



Points: ALICE data (APP B 43 (2012) 555); histograms: HYDJET++ 
 

HYDJET++ reproduces pT-spectrum of pions, kaons and (anti-)protons as well 
.
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PT-spectra of identified hadrons

|η|<0.5 
PbPbPbPb

PbPb PbPb

L.V. Bravina et al., EPJC 74 (2014) 2807 
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Elliptic flow of inclusive charged hadrons

Closed circles and squares: CMS data v
2
{2} & v

2
{LYZ} (PRC 87 (2013) 014902); 

histograms and open circles: HYDJET++ (“true” v
2
(ψ

2
) & v

2
{EP})

.

PbPbPbPb

PbPb PbPb

|η|<0.8 
L.V. Bravina et al., EPJC 74 (2014) 2807 



49

Triangular flow of inclusive charged hadrons

Closed circles and squares: CMS data v
3
{2} & v

3
{EP} (PRC 89 (2014) 044906); 

histograms and open circles: HYDJET++ (“true” v
3
(ψ

3
) & v

3
{EP})

.

PbPbPbPb

PbPb PbPb

|η|<0.8 
L.V. Bravina et al., EPJC 74 (2014) 2807 
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Elliptic flow of inclusive charged hadrons

Closed circles: ATLAS data v
2
{EP} (PRC 86 (2012) 014907); 

histograms and open circles: HYDJET++ (“true” v
2
(ψ

2
) & v

2
{EP})

.

|η|<2.5 

PbPbPbPb

PbPb PbPb

L.V. Bravina et al., EPJC 74 (2014) 2807 
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Triangular flow of inclusive charged hadrons

Closed circles: ATLAS data v
3
{EP} (PRC 86 (2012) 014907); 

histograms and open circles: HYDJET++ (“true” v
3
(ψ

3
) & v

3
{EP})

.

|η|<2.5 

PbPbPbPb

PbPb PbPb

L.V. Bravina et al., EPJC 74 (2014) 2807 
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Elliptic and triangular flows of identified hadrons

Points: ALICE data (JPG 38 (2011) 124047); histograms: HYDJET++

HYDJET++ reproduces v
2 
and v

3
 for kaons and (anti-)protons, but rather underestimates 

the data for pions (stronger non-flow correlations in the data than in the model?)
 
.

|η|<0.8 

PbPbPbPb PbPb PbPb

L.V. Bravina et al., EPJC 74 (2014) 2807 
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J/ψ mesons at LHC (p
T
-spectrum)  

PbPbPbPb

Points: ALICE data (arXiv:1506.08804); histograms: HYDJET++
(T

th
= T

ch
= 165 MeV, ηmax = 2.3, 

u

max = 0.6, γ
c
= 11.5, P

T min
= 3.0 GeV/c)  

 
HYDJET++ reproduces J/ψ-meson p

T-
spectrum (up to ~3 GeV/c) with the freeze-out parameters 

different from ones for inclusive hadrons ⇒ kinetic freeze-out of  J/ψ thermal component occurs 
before freeze-out of light hadrons; non-thermal component is important at intermediate & high pT
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