

Thermal and non-thermal charmed meson production in heavy ion collisions at LHC

ниияф

МГУ

Igor Lokhtin Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

in collaboration with A. Belyaev, G.Eyyubova, G. Ponimatkin, E. Pronina

The 15th International Conference on Strangeness in Quark Matter July 6–11, 2015, Dubna, Russia

The modern pattern of multi-particle production in (most central) heavy ion collisions at RHIC and LHC agrees with the formation of hot strongly-interacting matter with hydrodynamical properties ("quark-gluon fluid"), which absorbs energetic quarks and gluons due to their multiple scattering and medium-induced energy loss.

The modern pattern of multi-particle production in (most central) heavy ion collisions at RHIC and LHC agrees with the formation of hot strongly-interacting matter with hydrodynamical properties ("quark-gluon fluid"), which absorbs energetic quarks and gluons due to their multiple scattering and medium-induced energy loss.

Within such paradigma, a number of questions on heavy flavours arise:

- Are heavy quarks thermalized in quark-gluon plasma?
- What is the mass dependence of medium-induced quark energy loss?
- Are charmed hadrons (D, J/ψ) in a kinetic equilibrium with the medium?
- How the specific pattern of quarkonium suppression related to the interplay between thermal and non-thermal mechanisms of J/ψ meson production?

The modern pattern of multi-particle production in (most central) heavy ion collisions at RHIC and LHC agrees with the formation of hot strongly-interacting matter with hydrodynamical properties ("quark-gluon fluid"), which absorbs energetic quarks and gluons due to their multiple scattering and medium-induced energy loss.

Within such paradigma, a number of questions on heavy flavours arise:

- Are heavy quarks thermalized in quark-gluon plasma?
- What is the mass dependence of medium-induced quark energy loss?
- Are charmed hadrons (D, J/ψ) in a kinetic equilibrium with the medium?
- How the specific pattern of quarkonium suppression related to the interplay between thermal and non-thermal mechanisms of J/ψ meson production?

In this talk, I'll present some results of the phenomenological analysis of LHC data on p_T -spectra and elliptic flow of charmed hadrons (D, J/ ψ) in PbPb collisions at $\sqrt{s_{_{NN}}}=2.76$ TeV in the frameworks of two-component HYDJET++ model. The comparision with RHIC results is also discussed.

HYDJET and HYDJET++ relativistic heavy ion event generators HYDJET (HYDrodynamics + JETs) - event generator to simulate heavy ion event as merging of two independent components (soft hydro-type part + hard multi-partonic state, the latter is based on PYQUEN - PYthia QUENched).

http://cern.ch/lokhtin/hydro/hydjet.html

(latest version 1.9)

Original paper: I.Lokhtin, A.Snigirev, Eur. Phys. J. C 46 (2006) 2011

HYDJET++ (HYDJET v.2.*) – continuation of HYDJET (identical hard component + improved soft component including full set of thermal resonance production).

http://cern.ch/lokhtin/hydjet++

(latest version 2.2)

Original paper: I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, K.Tywoniuk, Comp. Phys. Comm. 180 (2009) 779

HYDJET++ (soft component): physics frames

Soft (hydro) part of HYDJET++ is based on the adapted FAST MC model: Part I: N.S.Amelin, R.Lednisky, T.A.Pocheptsov, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko, Yu.M.Sinyukov, Phys. Rev. C 74 (2006) 064901 Part II: N.S.Amelin, R.Lednisky, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko, Yu.M.Sinyukov, I.C.Arsene, L.Bravina, Phys. Rev. C 77 (2008) 014903

- fast HYDJET-inspired MC procedure for soft hadron generation
- multiplicities are determined assuming thermal equilibrium
- hadrons are produced on the hypersurface represented by a parameterization of relativistic hydrodynamics with given freeze-out conditions
- chemical and kinetic freeze-outs are separated
- decays of hadronic resonances are taken into account (360 particles from SHARE data table) with "home-made" decayer
- written within ROOT framework (C++)
- contains 16 free parameters (but this number may be reduced to 9)

HYDJET++ (soft): input parameters

1-5. Thermodynamic parameters at chemical freeze-out: T^{ch} , { μ_B , μ_S , μ_C , μ_Q } (option to calculate T^{ch} , μ_B and μ_s using phenomenological parameterization $\mu_B(\sqrt{s})$, $T^{ch}(\mu_B)$ is foreseen).

6-7. Strangeness suppression factor $\gamma_s \leq 1$ and charm enchancement factor $\gamma_c \geq 1$ (options to use phenomenological parameterization γ_s (T^{ch}, μ_B) and to calculate γ_c are foreseen).

8-9. Thermodynamical parameters at thermal freeze-out: T^{th} , and μ_{π} - effective chemical potential of positively charged pions.

10-12. Volume parameters at thermal freeze-out: proper time τ_f , its standard deviation (emission duration) $\Delta \tau_f$, maximal transverse radius R_f .

13. Maximal transverse flow rapidity at thermal freeze-out ρ_u^{max} .

14. Maximal longitudinal flow rapidity at thermal freeze-out η^{max} .

15. Flow anisotropy parameter: $\delta(b) \rightarrow u^{\mu} = u^{\mu} (\delta(b), \varphi)$

16. Coordinate anisotropy: $\varepsilon(b) \rightarrow R_f(b) = R_f(0) [V_{eff}(\varepsilon(0), \delta(0))/V_{eff}(\varepsilon(b), \delta(b))]^{1/2} [N_{part}(b)/N_{part}(0)]^{1/3}$

For impact parameter range bmin-bmax: $V_{eff}(b) = V_{eff}(0)N_{part}(b)/N_{part}(0), \quad \tau_f(b) = \tau_f(0)[N_{part}(b)/N_{part}(0)]^{1/3}$

HYDJET++ (hard component): PYQUEN (PYthia QUENched)

Initial parton configuration PYTHIA6.4 w/o hadronization: mstp(111)=0 Parton rescattering & energy loss (collisional, radiative) + emitted g PYQUEN rearranges partons to update ns strings

Parton hadronization and final particle formation PYTHIA6.4 with hadronization: call PYEXEC

Three model parameters: initial maximal QGP temperature T_0 , QGP formation time τ_0 and number of active quark flavors in QGP N_f (+ minimal p_T of hard process $P_{T_{min}}$ to specify the number of hard NN collisions) *I.P.Lokhtin, A.M.Snigirev, Eur. Phys. J. 45 (2006) 211 (latest version 1.5.1)*

1) Thermal charm production in HYDJET++ (soft component) Thermal charmed hadrons J/ψ , D^0 , \overline{D}^0 , D^+ , D^- , D_{s}^+ , D_{s}^- , Λ_{s}^+ , Λ_{s}^- are generated within the statistical hadronization model (A.Andronic, P.Braun-Munzinger, K.Redlich, J.Stachel, Phys.Lett. B 571 (2003) 36; Nucl. Phys. A 789 (2007) 334) $N_{D} = \gamma_{C} N_{D}^{\text{th}} (I_{1} (\gamma_{C} N_{D}^{\text{th}}) / I_{0} (\gamma_{C} N_{D}^{\text{th}})), \qquad N_{I/W} = \gamma_{C}^{2} N_{I/W}^{\text{th}}$ γ_c - charm enhancement factor may be obtained from the equation: $N_{cc} = 0.5 \gamma_{c} N_{D}^{th} (I_{1} (\gamma_{c} N_{D}^{th}) / I_{0} (\gamma_{c} N_{D}^{th})) + \gamma_{c}^{2} N_{I/m}^{th}$ where number of c-quark pairs N_{cc} is calculated with PYTHIA (the factor K~2 is applied to take into account NLO pQCD corrections) and multiplied by the number of NN sub-collisions for given centrality 2) Non-thermal charm production in HYDJET++ (hard component) Non-thermal charmed hadrons are generated within

PYTHIA/PYQUEN taking into account medium-induced rescattering and radiative and collisional energy loss of heavy quarks (b, c)

Charmed mesons at RHIC (J/ψ)

I.P. Lokhtin et al., J.Phys.Conf.Ser. 270 (2011) 012060

Points: PHENIX data PRL 98 (2007) 232301); histograms: HYDJET++

If thermal freeze-out for J/ ψ happens at the same temperature as for inclusive hadrons, T_{th}=100 MeV (η^{max} =3.3, ρ_u^{max} =1.1) then simulated spectra are much wider than the data

Charmed mesons at RHIC (J/ψ)

I.P. Lokhtin et al., J.Phys.Conf.Ser. 270 (2011) 012060

Points: PHENIX data PRL 98 (2007) 232301); histograms: HYDJET++

But if thermal freeze-out for J/ ψ happens at the same temperature as chemical freeze-out, T_{th}(J/ ψ)=T_{ch}=165 MeV (η^{max} =1.1, ρ_{u}^{max} =0.5), then simulated spectra match the data

Charmed mesons at RHIC (D)

Simulated p_T -spectrum match the data if freeze-out parameters for D are the same as for J/ ψ : $T_{th} = T_{ch} = 165 \text{ MeV} (\eta^{max} = 1.1, \rho_u^{max} = 0.5)$

• Momentum spectra of D and J/ ψ mesons in most central AuAu collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components with the same freeze-out parameters

- Momentum spectra of D and J/ψ mesons in most central AuAu collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components with the same freeze-out parameters
- Thermal freeze-out of charmed mesons happens appreciably before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial & longitudinal collective velocities)

- Momentum spectra of D and J/ψ mesons in most central AuAu collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components with the same freeze-out parameters
- Thermal freeze-out of charmed mesons happens appreciably before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial & longitudinal collective velocities)
- Thus D and J/ψ mesons seem not to be in a kinetic equilibrium with the created medium

- Momentum spectra of D and J/ψ mesons in most central AuAu collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components with the same freeze-out parameters
- Thermal freeze-out of charmed mesons happens appreciably before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial & longitudinal collective velocities)
- Thus D and J/ ψ mesons seem not to be in a kinetic equilibrium with the created medium

What about charmed mesons at the LHC?

D mesons at LHC (p_{T} -spectrum)

HYDJET++ reproduces p_T -spectrum of D-mesons with the *same freeze-out parameters* as for inclusive hadrons \Rightarrow significant part of D-mesons (*thermal component*) is in the kinetic equilibrium with the medium; *non-thermal component* is important at high p_T ¹⁹

Points: ALICE data (PRC 90 (2014) 034904)); histograms: HYDJET++

HYDJET++ reproduces $v_2(p_T)$ of D-mesons with the same freeze-out parameters as for inclusive hadrons \Rightarrow significant part of D-mesons (thermal component) is in the kinetic equilibrium with the medium; non-thermal component is important at high p_T ²⁰

HYDJET++ reproduces $R_{AA}(p_T)$ of D-mesons up to very high $p_T \Rightarrow$ treatment of heavy quark energy loss in hard component of HYDJET++ (PYQUEN) seems quite successful 22

J/ψ mesons at LHC (p_T-spectrum)

HYDJET++ reproduces J/ ψ -meson p_T spectrum (up to ~3 GeV/c) with the *freeze-out parameters* different from ones for inclusive hadrons \Rightarrow kinetic freeze-out of J/ ψ thermal component occurs before freeze-out of light hadrons; non-thermal component is important at intermediate & high p_T

Superposition of *thermal* and *non-thermal components* in HYDJET++ allows us qualitatively to reproduce momentum dependence of J/ψ suppression factor in PbPb collisions at the LHC (but PYTHIA@HYDJET++ tuning is needed for adequate J/ψ modeling at high p_T^{24}

J/
$$\psi$$
 mesons at LHC (elliptic flow v₂ = \varphi- ψ_R)>)

Points: ALICE data (PRL 111 (2013) 162301); histograms: HYDJET++

HYDJET++ reproduces $v_2(p_T)$ of J/ ψ -mesons with the *freeze-out parameters different* from ones for inclusive hadrons \Rightarrow kinetic freeze-out of J/ ψ thermal component occurs appreciably before freeze-out of light hadrons; non-thermal component is important at intermediate & high p_T

• Momentum spectra and elliptic flow of D and J/ ψ mesons in PbPb collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components (D-mesons - with the same f.-o. parameters as for inclusive hadrons, J/ ψ mesons – no).

- Momentum spectra and elliptic flow of D and J/ ψ mesons in PbPb collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components (D-mesons with the same f.-o. parameters as for inclusive hadrons, J/ ψ mesons no).
- Thermal freeze-out of D-mesons happens simultaneously with thermal freeze-out of light hadrons; thermal freeze-out of J/ ψ -mesons happens appreciably before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial & longitudinal collective velocities, and enhanced non-thermal contribution).

- Momentum spectra and elliptic flow of D and J/ ψ mesons in PbPb collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components (D-mesons with the same f.-o. parameters as for inclusive hadrons, J/ ψ mesons no).
- Thermal freeze-out of D-mesons happens simultaneously with thermal freeze-out of light hadrons; thermal freeze-out of J/ ψ -mesons happens appreciably before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial & longitudinal collective velocities, and enhanced non-thermal contribution).
- Thus the significant part of D mesons (up to $p_T \sim 4 \text{ GeV/c}$) seems to be in a kinetic equilibrium with the medium, while J/ ψ mesons – not yet. Taking into account non-thermal production mechanism & in-medium heavy quark energy loss are important at high transverse momenta.

- Momentum spectra and elliptic flow of D and J/ ψ mesons in PbPb collisions may be reproduced by two-component model including thermal (soft) and non-thermal (hard) components (D-mesons with the same f.-o. parameters as for inclusive hadrons, J/ ψ mesons no).
- Thermal freeze-out of D-mesons happens simultaneously with thermal freeze-out of light hadrons; thermal freeze-out of J/ ψ -mesons happens appreciably before thermal freeze-out of light hadrons, presumably at chemical freeze-out (with reduced radial & longitudinal collective velocities, and enhanced non-thermal contribution).
- Thus the significant part of D mesons (up to $p_T \sim 4 \text{ GeV/c}$) seems to be in a kinetic equilibrium with the medium, while J/ ψ mesons – not yet. Taking into account non-thermal production mechanism & in-medium heavy quark energy loss are important at high transverse momenta.

High degree of c-quark thermalization in quark-gluon plasma is achieved in PbPb collisions at the LHC (?) 30

BACKUP SLIDES

Centrality of nucleus-nucleus interactions

Azimuthal correlations and flow

Monte-Carlo simulation of hard component (including nuclear shadowing) in HYDJET++

- •Calculating the number of hard NN sub-collisions Njet (b, Ptmin, √s) with Pt>Ptmin around its mean value according to the binomial distribution.
- •Selecting the type (for each of Njet) of hard NN sub-collisions (pp, np or nn) depending on number of protons (Z) and neutrons (A-Z) in nucleus A according to the formula: $Z=A/(1.98+0.015A^{2/3})$.
- •Generating the hard component by calling PYQUEN njet times.
- Correcting the PDF in nucleus by the accepting/rejecting procedure for each of Njet hard NN sub-collisions: comparision of random number generated uniformly in the interval [0,1] with shadowing factor S(r1,r2,x1,x2,Q2) ≤ 1 taken from the adapted impact parameter dependent parameterization based on Glauber-Gribov theory (*K.Tywoniuk et al., Phys. Lett. B 657 (2007) 170*). 34

HYDJET++ (soft): main physics assumptions

A hydrodynamic expansion of the fireball is supposed ends by a sudden system breakup at given T and chemical potentials. Momentum distribution of produced hadrons keeps the thermal character of the equilibrium distribution.

Cooper-Frye formula:
$$p^0 \frac{d^3 N_i}{d^3 p} = \int_{\sigma(x)} d^3 \sigma_\mu(x) p^\mu f_i^{eq}(p^\nu u_\mu(x);T,\mu_i)$$

- HYDJET++ avoids straightforward 6-dimensional integration by using the special simulation procedure (like HYDJET): momentum generation in the rest frame of fluid element, then Lorentz transformation in the global frame \rightarrow uniform weights \rightarrow effective von-Neumann rejection-acception procedure.

Freeze-out surface parameterizations

1. The Bjorken model with hypersurface $\tau = (t^2 - z^2)^{1/2} = const$ 2. Linear transverse flow rapidity profile $\rho_u = \frac{r}{R} \rho_u^{\max}$ 3. The total effective volume for particle production at - $V_{eff} = \int_{\sigma(x)} d^3 \sigma_\mu(x) u^\mu(x) = \tau \int_0^R \gamma_r r dr \int_0^{2\pi} d\phi \int_{\eta_{\min}}^{\eta_{\max}} d\eta = 2\pi \tau \Delta \eta \left(\frac{R}{\rho_u^{\max}}\right)^2 (\rho_u^{\max} \sinh \rho_u^{\max} - \cosh \rho_u^{\max} + 1)$

HYDJET++ (soft): hadron multiplicities

- 1. The hadronic matter created in heavy-ion collisions is considered as a hydrodynamically expanding fireball with EOS of an ideal hadron gas.
- 2. "Concept of effective volume" T=const and μ =const: the total yield of particle species is $N_i = \rho_i(T, \mu_i)V_{eff}$.
- 3. Chemical freeze-out : T, $\mu_i = \mu_B B_i + \mu_S S_i + \mu_c C_i + \mu_Q Q_i$; T, μ_B –can be fixed by particle ratios, or by phenomenological formulas

$$T(\mu_B) = a - b\mu_B - c\mu_B^4; \mu_B(\sqrt{s_{NN}}) = \frac{d}{1 + e\sqrt{s_{NN}}}$$

4. Chemical freeze-out: all macroscopic characteristics of particle system are determined via a set of equilibrium distribution functions in the fluid element rest frame: $1 \qquad \sigma$

$$f_i^{eq}(p^{0^*};T,\mu_i) = \frac{1}{(2\pi)^3} \frac{g_i}{\exp([p^{0^*}-\mu_i]/T)\pm 1}$$

$$\rho_i^{eq}(T,\mu_i) = \int_0^\infty d^3 \vec{p}^* f_i^{eq}(p^{0^*};T(x^*),\mu(x^*)_i) = 4\pi \int_0^\infty dp^* p^{*2} f_i^{eq}(p^{0^*};T,\mu_i)$$

36

HYDJET++ (soft): thermal and chemical freeze-outs

1. The particle densities at the chemical freeze-out stage are too high to consider particles as free streaming and to associate this stage with the thermal freeze-out

2. Within the concept of chemically frozen evolution, assumption of the conservation of the particle number ratios from the chemical to thermal freeze-out : $\rho_i^{eq}(T^{ch}, \mu_i^{ch}) = \rho_i^{eq}(T^{th}, \mu_i^{th})$

$$\frac{\rho_i^{eq}(T^{en},\mu_i^{en})}{\rho_{\pi}^{eq}(T^{en},\mu_{\pi}^{en})} = \frac{\rho_i^{eq}(T^{en},\mu_i^{en})}{\rho_{\pi}^{eq}(T^{th},\mu_{\pi}^{th})}$$

3. The absolute values $\rho_i^{eq}(T^{th}, \mu_i^{th})$ are determined by the choice of the free parameter of the model: effective pion chemical potential $\mu_{\pi}^{eff,th}$ at T^{th} Assuming for the other particles (heavier then pions) the Botzmann approximation :

$$\mu_{i}^{th} = T^{th} \ln \left(\frac{\rho_{i}^{eq}(T^{ch}, \mu_{i}^{ch})}{\rho_{i}^{eq}(T^{th}, \mu_{i} = 0)} \frac{\rho_{\pi}^{eq}(T^{th}, \mu_{\pi}^{eff, th})}{\rho_{\pi}^{eq}(T^{ch}, \mu_{i}^{ch})} \right)$$

Particle momentum spectra are generated on the thermal freeze-out hypersurface, the hadronic composition at this stage is defined by the parameters of the system at chemical freeze-out

Anisotropic flow generation in HYDJET++ (soft component) L.V. Bravina et al., *EPJC 74 (2014) 2807*

38

Anisotropic flow generation in HYDJET++ (soft component)

 $\epsilon(b) = \frac{R_y^2 - R_x^2}{R^2 + R^2},$

$$\frac{N}{l\phi} \sim 1 + 2v_2 \cos 2(\phi - \psi_2) + 2v_3 \cos 3(\phi - \psi_3) + \frac{N}{l\phi} \sim 1 + 2v_2 \cos 2(\phi - \psi_2) + 2v_3 \cos 3(\phi - \psi_3) + \frac{N}{l\phi} \sim 1 + 2v_2 \cos 2(\phi - \psi_2) + 2v_3 \cos 3(\phi - \psi_3) + \frac{N}{l\phi} \sim 1 + 2v_2 \cos 2(\phi - \psi_2) + 2v_3 \cos 3(\phi - \psi_3) + \frac{N}{l\phi} \sim 1 + 2v_2 \cos 3(\phi - \psi_3) + \frac{N}$$

- spatial modulation of freeze-out surface
- fluid velocity modulation
 <u>Spatial anisotropy</u>

$$\tan \varphi_{*} = \sqrt{\frac{1 - \delta(b)}{1 + \delta(b)}} \, \tan \varphi.$$

R(b) – surface radius

 ϕ_u : azimuthal angle of fluid velocity ϕ : spatial azimuthal angle

Triangular flow v_3

Spatal modulation of freeze-out surface as $cos(3\varphi)$ with independent phase Ψ_3 and parameter ε_3

$$R(b,\phi) = R_f(b) \frac{\sqrt{1-\epsilon^2(b)}}{\sqrt{1+\epsilon(b)\cos 2\phi}} [1+\epsilon_3(b)\cos 3(\phi+\Psi_3^{\rm RP})]$$

Three parameters $\varepsilon(b_0)$, $\varepsilon_3(b_0)$ $\bowtie \delta(b_0)$ is tuned to fit the data

39

 $v_2 \propto \frac{2(\delta - \epsilon)}{(1 - \delta^2)(1 - \epsilon^2)}$

Medium-induced partonic rescattering and energy loss («jet quenching»)

Collisional loss (high momentum transfer approximation) Radiative loss (BDMPS model, coherent radiation)

PYQUEN: physics frames General kinetic integral equation:

$$\Delta E(L,E) = \int_{0}^{L} dx \frac{dP}{dx}(x)\lambda(x)\frac{dE}{dx}(x,E), \quad \frac{dP}{dx}(x) = \frac{1}{\lambda(x)}\exp\left(-x/\lambda(x)\right)$$

1. Collisional loss and elastic scattering cross section: $\frac{dE}{dx} = \frac{1}{4T\lambda\sigma} \int_{\mu_D^2}^{t_{max}} dt \frac{d\sigma}{dt} t, \quad \frac{d\sigma}{dt} \approx C \frac{2\pi\alpha_s^2(t)}{t^2}, \quad \alpha_s = \frac{12\pi}{(33-2N_f)\ln(t/\Lambda_{QCD}^2)}, \quad C = 9/4(gg), 1(gq), 4/9(qq)$

2. Radiative loss (BDMPS): $\frac{dE}{dx}(m_q=0) = \frac{2\alpha_s C_F}{\pi\tau_L} \int_{E_{LPM} \sim \lambda_g \mu_D^2}^{E} d\omega \left[1-y+\frac{y^2}{2}\right] \ln \left|\cos(\omega_1\tau_1)\right|, \quad \omega_1 = \sqrt{i\left(1-y+\frac{C_F}{3}y^2\right)} \bar{k} \ln \frac{16}{\bar{k}}, \quad \bar{k} = \frac{\mu_D^2 \lambda_g}{\omega(1-y)}, \quad \tau_1 = \frac{\tau_L}{2\lambda_g}, \quad y = \frac{\omega}{E}, \quad C_F = \frac{4}{3}$

"dead cone" approximation for massive quarks:

$$\frac{dE}{dx}(m_q \neq 0) = \frac{1}{\left(1 + (l \,\omega)^{3/2}\right)^2} \frac{dE}{dx}(m_q = 0), \qquad l = \left(\frac{\lambda}{\mu_D^2}\right)^{1/3} \left(\frac{m_q}{E}\right)^{4/3}$$
41

Nuclear geometry and QGP evolution

impact parameter $b \equiv |O_1O_2|$ - transverse distance between nucleus centers

 $\varepsilon(r_1, r_2) \propto T_A(r_1) * T_A(r_2)$ (T_A(b) - nuclear thickness function)

Space-time evolution of QGP, created in region of initial overlaping of colliding nuclei, is described by Lorenz-invariant Bjorken's hydrodynamics J.D. Bjorken, PRD 27 (1983) 140

Monte-Carlo simulation of parton rescattering and energy loss in PYQUEN

• Distribution over jet production vertex $V(r \cos \psi, r \sin \psi)$ at im.p. b

$$\frac{dN}{d\psi dr}(b) = \frac{T_A(r_1)T_A(r_2)}{\int\limits_0^{2\pi} d\psi \int\limits_0^{r_{max}} r dr T_A(r_1)T_A(r_2)}$$

• Transverse distance between parton scatterings $l_i = (\tau_{i+1} - \tau) E/p_T$

$$\frac{dP}{dl_i} = \lambda^{-1}(\tau_{i+1}) \exp\left(-\int_0^{l_i} \lambda^{-1}(\tau_i+s) ds\right), \quad \lambda^{-1} = \sigma \rho$$

- Radiative and collisional energy loss per scattering $\Delta E_{tot,i} = \Delta E_{rad,i} + \Delta E_{col,i}$
- Transverse momentum kick per scattering $\Delta k_{t,i}^2 = \left(E - \frac{t_i}{2m_{0i}}\right)^2 - \left(p - \frac{E}{p} \frac{t_i}{2m_{0i}} - \frac{t_i}{2p}\right)^2 - m_q^2$

43

Angular structure of energy loss in PYQUEN

Radiative loss, three options (simple parametrizations) for angular distribution of in-medium emitted gluons:

Collinear radiation

$$\theta = 0$$

Small-angular radiation $\frac{dN^g}{d\theta} \propto \sin\theta \exp(\frac{-(\theta - \theta_0)^2}{2\theta_1^2}), \quad \theta_0 \sim 5^o$

Wide-angular radiation $\frac{dN^3}{d\theta} \propto$

$$\frac{dN^g}{d\theta} \propto \frac{1}{\theta}$$

Collisional loss always "out-of-cone" (energy is absorbed by medium)

Charged multiplicity vs. centrality and pseudorapidity

I.P. Lokhtin et al., EPJC 72(2012) 2045

Open points: ALICE data (PRL 106 (2011) 032301), closed points: CMS data (JHEP 1108 (2011) 141); histograms: HYDJET++

Tuned HYDJET++ reproduces multiplicity vs. event centrality (down to very peripheral events) with contribution of hard component to multiplicity in mid-rapidity 45 for central PbPb ~30%, as well as approximately flat pseudorapidity distribution.

P_T -spectrum and R_{AA} for inclusive charged hadrons

I.P. Lokhtin et al., EPJC 72(2012) 2045

HYDJET++ reproduces p_T -spectrum and R_{AA} for central PbPb in mid-rapidity up to p_T ~100 GeV/c

P_{T} -spectra of identified hadrons

L.V. Bravina et al., EPJC 74 (2014) 2807

Points: ALICE data (APP B 43 (2012) 555); histograms: HYDJET++

HYDJET++ reproduces p_T-spectrum of pions, kaons and (anti-)protons as well

Elliptic flow of inclusive charged hadrons

L.V. Bravina et al., EPJC 74 (2014) 2807

Triangular flow of inclusive charged hadrons

L.V. Bravina et al., EPJC 74 (2014) 2807

histograms and open circles: HYDJET++ ("true" $v_3(\psi_3) \& v_3(EP)$)

Elliptic flow of inclusive charged hadrons L.V. Bravina et al., *EPJC 74 (2014) 2807*

Triangular flow of inclusive charged hadrons L.V. Bravina et al., *EPJC 74 (2014) 2807*

Elliptic and triangular flows of identified hadrons

L.V. Bravina et al., EPJC 74 (2014) 2807

Points: ALICE data (JPG 38 (2011) 124047); histograms: HYDJET++

HYDJET++ reproduces v_2 and v_3 for kaons and (anti-)protons, but rather underestimates the data for pions (stronger non-flow correlations in the data than in the model?)⁵²

J/ψ mesons at LHC (p_T-spectrum)

HYDJET++ reproduces J/ ψ -meson p_T-spectrum (up to ~3 GeV/c) with the *freeze-out parameters* different from ones for inclusive hadrons \Rightarrow kinetic freeze-out of J/ ψ thermal component occurs before freeze-out of light hadrons; non-thermal component is important at intermediate $\&^3$ high p_T