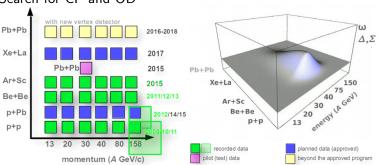
Energy dependence of fluctuations in p+p and Be+Be collisions from NA61/SHINE

Evgeny Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

5th - 11th July, 2015



SQM-2015, Dubna, Russia

E. Andronov for the NA61/SHINE collaboration

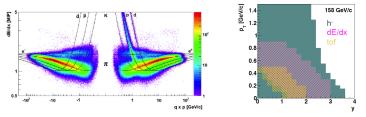
SPbSU, Laboratory of Ultra-High Energy Physics

Motivation of the NA61/SHINE strong interaction programme

Search for CP and OD

p+p and $^{7}Be+^{9}Be$ results to be shown in this presentation

E. Andronov for the NA61/SHINE collaboration


SPbSU, Laboratory of Ultra-High Energy Physics

ъ

(日) (周) (日) (日)

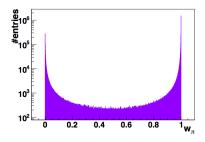
Analysis

- Analyzed data:
 - \bullet inelastic p+p at $\sqrt{s}=6.3, 7.7, 8.7, 12.3, 17.3~{\rm GeV}$
 - centrality selected ${}^7\text{Be}{+}{}^9\text{Be}$ at $\sqrt{s_{NN}}=6.27, 8.73, 11.94, 16.83$ GeV
- Results of NA61/SHINE to be shown include statistical errors and first estimates of systematic uncertainties
- Second moments of identified particle multiplicity distributions are corrected for the misidentification effect using the identity method
- Different acceptance maps for measurements with all charged particles and with identified particles were applied

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

Identity method: single particle identity


The identity method allows to obtain second and third moments (pure and mixed) of identified particle multiplicity distributions corrected for misidentification effect.

$$w_i = rac{
ho_i (dE/dx)}{
ho (dE/dx)}$$

where ρ_i - function fitted to i^{th} particle type (i: $\pi\text{,}$

K, p) and ρ - function fitted to total dE/dx

distribution in a given phase-space bin $\{q, p_T, p\}$

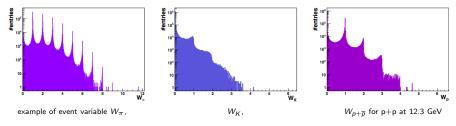
example of w_{π} distribution for p+p at 12.3 GeV

SPbSU, Laboratory of Ultra-High Energy Physics

- 20

4/16

E. Andronov for the NA61/SHINE collaboration


Identity method: event identity measure

Event quantity W_i defined as: $W_i = \sum_{q=1}^N w_i\left(q
ight)$, where

summation runs over all particles in an event

• For perfect particle identification W_i distribution equals the multiplicity distribution

• For particles with larger PID contamination (like K) W_i distribution gets smoother

$$\rho_i, \langle W_i \rangle, \langle W_i^2 \rangle, \langle W_i W_j \rangle \to \langle N_i^2 \rangle, \langle N_i N_j \rangle$$

Details of this calculations can be found in the references below

- M. Gazdzicki et al. PRC83:054907
- M. Gorenstein PRC84:024902
- A. Rustamov, M. Gorenstein PRC86:044906

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

3

5/16

イロト イロト イヨト イヨト

Multiplicity fluctuation measures

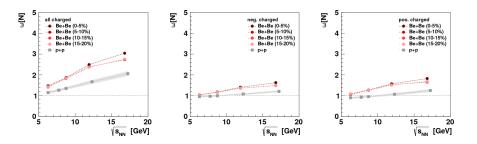
We consider fluctuation quantities with convenient properties in the reference models (e.g. WNM or GCE)

Intensive quantity

Independent of event-mean system volume $\langle V \rangle$ $\omega \left[N_i \right] = \frac{\langle N_i^2 \rangle - \langle N_i \rangle^2}{\langle N_i \rangle} \quad \bullet \omega \left[N_i \right] = 1 \text{ for Poisson } N_i \text{ distribution}$

Strongly intensive quantity

Independent of $\langle V \rangle$ and $\omega [V] \bullet \Delta [N_i, N_j] = \Sigma [N_i, N_j] = 1$ for independent particle production $\Delta [N_i, N_j] = (\langle N_i \rangle \omega [N_j] - \langle N_j \rangle \omega [N_i]) / \langle N_i - N_j \rangle$ $\Sigma [N_i, N_j] = (\langle N_i \rangle \omega [N_j] + \langle N_j \rangle \omega [N_i] - 2 cov (N_i, N_j)) / \langle N_i + N_j \rangle$


M. Gorenstein, M. Gazdzicki, PRC84:014904

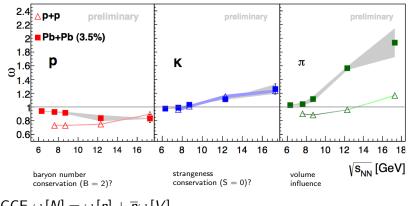
Note that commonly used $\nu_{dyn}^{jj} = \frac{\langle N_i + N_j \rangle}{\langle N_i \rangle \langle N_j \rangle} \left(\Sigma \left[N_i, N_j \right] - 1 \right)$

E. Andronov for the NA61/SHINE collaboration

◆□▶ < ⑦▶ < ≧▶ < ≧▶ < ≧▶ ≧ シ へ ⁶/16 SPbSU, Laboratory of Ultra-High Energy Physics

Scaled variance for charged particles $_{p+p \ vs. \ ^7Be+^9Be}$

In GCE $\omega[N] = \omega[n] + \overline{n}\omega[V]$ $\omega[N]$ for ⁷Be+⁹Be is larger than for p+p (due to volume fluctuations?).


T. Czopowicz [for the NA61/SHINE collaboration], PoS(CPOD2014)054

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

(日) (周) (日) (日)

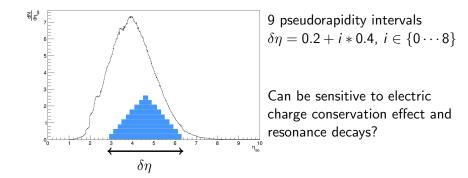
Scaled variance for identified hadrons (p, K, π) _{p+p vs. Pb+Pb (NA49)}

In GCE ω [*N*] = ω [*n*] + $\overline{n}\omega$ [*V*]

M. Gazdzicki, P. Seyboth, arXiv:1506.08141

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

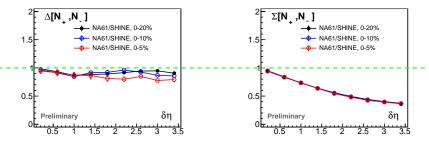

3

8/16

(日) (四) (日) (日) (日)

Δ [N_+ , N_-], Σ [N_+ , N_-]: analysis

Dependence on pseudorapidity interval width was studied for $\{N_+,N_-\}$ fluctuations for $^7{\rm Be}+^9{\rm Be}$ at 16.83 GeV

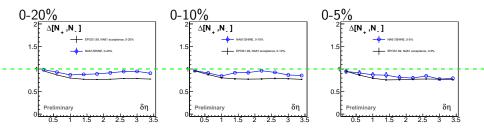

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

9/16

<ロト < 四ト < 回ト < 回ト < 回ト = 三回 -

 $\Delta [N_+, N_-], \Sigma [N_+, N_-]: \text{ centrality dependence}$ ⁷Be+⁹Be at $\sqrt{s_{NN}} = 16.83 \text{ GeV}$


- Both Δ and Σ are almost independent of centrality
- Both Δ and Σ are smaller than 1
- Σ decreases significantly with the growth of $\delta\eta$
- Systematic errors were estimated to be less than 5% for all points

<ロト < 回 ト < 臣 ト < 臣 ト 王 の へ で 10/16

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

 Δ [N_+ , N_-]: comparison with EPOS 1.99 ⁷Be+⁹Be at $\sqrt{s_{NN}} = 16.83$ GeV

EPOS model describes Δ behaviour qualitatively

NA61/SHINE EPOS 1.99

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

э

(日) (同) (日) (日) (日)

 $\sum [N_+, N_-]$: comparison with EPOS 1.99 ⁷Be+⁹Be at $\sqrt{s_{NN}} = 16.83$ GeV

EPOS model describes Σ behaviour both qualitatively and quantitatively

NA61/SHINE EPOS 1.99

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

э.

イロト 不得下 イヨト イヨト

Summary-1

- ▶ Preliminary results on ω [N] for all, negatively and positively charged hadrons in p+p at √s = 6.3, 7.7, 8.7, 12.3, 17.3 GeV and ⁷Be+⁹Be at √s_{NN} = 6.27, 8.73, 11.94, 16.83 GeV were presented
- Preliminary results on ω [N] for identified hadrons (π, K, p) in p+p at √s = 7.7, 8.7, 12.3, 17.3 GeV were shown in comparison with the corresponding results for 3.5% of most central events in Pb+Pb from NA49
- ► Preliminary results on $\Delta[N_+, N_-]$ and $\Sigma[N_+, N_-]$ in ⁷Be+⁹Be at $\sqrt{s_{NN}} = 16.83$ GeV for 9 pseudorapidity intervals were presented

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

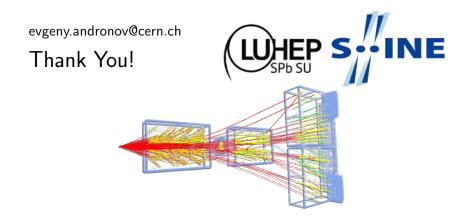
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Summary-2

- $\omega[N_{ch}]$, $\omega[N_+]$, $\omega[N_-]$ for p+p are smaller than that for ⁷Be+⁹Be at all centralities (due to the volume fluctuations?)
- ω [π] for Pb+Pb is significantly higher than that for p+p (due to the volume fluctuations?)
- $\omega[K] \ge 1$ both for p+p and Pb+Pb
- $\omega[p] \leqslant 1$ both for p+p and Pb+Pb

SPbSU, Laboratory of Ultra-High Energy Physics

14/16


▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Summary-3

- ► Δ [N₊, N₋] and Σ [N₊, N₋] are almost independent of centrality
- ► Δ [N₊, N₋] and Σ [N₊, N₋] are smaller than 1 for all rapidity intervals (possibly due to the energy-momentum conservation and charge conservation effects)
- ► EPOS describes Δ [N₊, N₋] and Σ [N₊, N₋] behaviour quite well

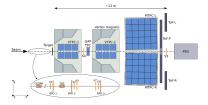
SPbSU, Laboratory of Ultra-High Energy Physics

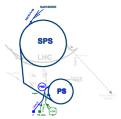
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics


Back-up


E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

NA61/SHINE experiment

- Located at the CERN/SPS
- Fixed-target experiment
- Successor of NA49 experiment
- Approved in 2007. First physics run in 2009

SPbSU, Laboratory of Ultra-High Energy Physics

18/16

< □ > < □ > < □ > < □ >

E. Andronov for the NA61/SHINE collaboration

NA61/SHINE detector

Large acceptance: 50%

- ► High momentum resolution: $\frac{\sigma(p)}{p^2} \approx 10^{-4} (GeV/c)^{-1}$ (at full B = 9Tm)
- ToF walls resolution: $\sigma(t) \approx 60 ps$
- Good particle identification: $\frac{\sigma (dE/dx)}{dE/dx} \approx 0.04$, $\sigma (m_{inv}) \approx 5 MeV$
- ▶ High detector efficiency: 95%
- Event recording rate: 70 events/sec

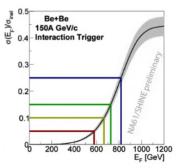
E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

19/16

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

PSD detector. Centrality determination.

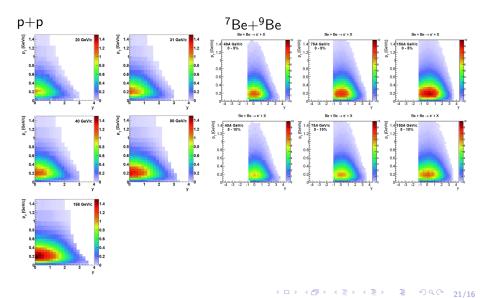

PSD (Projectile Spectator Detector) is located on the beam axis and measures the forward energy E_F related to the non-interacting nucleons of the beam nucleus


 $\blacktriangleright \approx 25\%$

 $\blacktriangleright \approx 15\%$

 $\blacktriangleright \approx 10\%$

 $\ge \approx 5\%$



4 日 ト 4 日 ト 4 王 ト 4 王 ト 王 つへで 20/16

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

$\pi^- y - p_T$ spectra

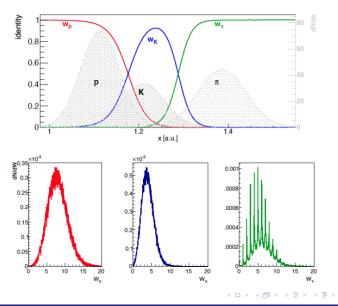
E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

Identity method

$$\begin{pmatrix}
N_{p}^{2} \\
\langle N_{k}^{2} \\
\langle N_{p}N_{k} \\
\rangle
\end{pmatrix} = \begin{pmatrix}
\overline{w}_{pp}^{2} & \overline{w}_{pk}^{2} & 2\overline{w}_{pp}\overline{w}_{pk} \\
\overline{w}_{kp}^{2} & \overline{w}_{kk}^{2} & 2\overline{w}_{kp}\overline{w}_{kk} \\
\overline{w}_{pp}\overline{w}_{kp} & \overline{w}_{pk}\overline{w}_{kk} & \overline{w}_{pp}\overline{w}_{kk} + \overline{w}_{pk}\overline{w}_{kp} \\
\overline{w}_{p}\sqrt{w}_{k}^{2} & -b_{k} \\
\langle W_{p}W_{k} \\
\rangle - b_{k} \\
\end{pmatrix} \qquad 3 \text{ equations, 3 unknowns (unique solution)}$$

$$b_{i} = \sum_{j=p,k} \langle N_{j} \rangle \langle \overline{w}_{ij}^{2} - \overline{w}_{ij}^{2} \rangle, \quad b_{pk} = \sum_{j=p,k} \langle N_{j} \rangle \langle \overline{w}_{pij} - \overline{w}_{pj}\overline{w}_{kj} \rangle$$


$$\overline{w}_{ij} = \frac{\int w_{i}(m)\rho_{j}(m)dm}{\int \rho_{j}(m)dm} \qquad \overline{w}_{ij}^{2} = \frac{\int w_{i}^{2}(m)\rho_{j}(m)dm}{\int \rho_{j}(m)dm} \qquad \overline{w}_{ikj} = \frac{\int w_{i}(m)w_{k}(m)\rho_{j}(m)dm}{\int \rho_{j}(m)dm}$$

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ(?)

Identity method

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

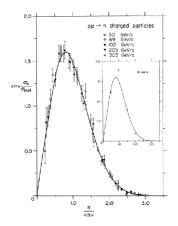
æ

23/16

Fluctuation measures

Strongly intensive quantity

 $\begin{array}{l} \mbox{Independent of } \langle V \rangle \mbox{ and } \omega \left[V \right] \\ \Phi_{ij} = \frac{\sqrt{\langle X_i \rangle \langle X_j \rangle}}{\langle X_i \rangle + \langle X_j \rangle} \left(\sqrt{\Sigma_{ij}} - 1 \right) \ \bullet \ \Phi_{ij} = 0 \ \mbox{for independent particle production} \\ \Sigma_{ij} = \left(\langle X_i \rangle \omega \left[X_j \right] + \langle X_j \rangle \omega \left[X_i \right] - 2 \textit{cov} \left(X_i, X_j \right) \right) / \langle X_i + X_j \rangle \end{array}$


E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

24/16

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

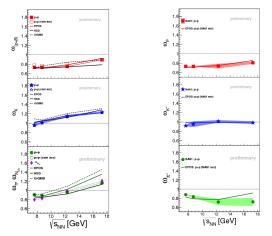
KNO influence on scaled variance?

$$P(N) = \frac{1}{\langle N \rangle} \Psi_{\alpha}(\frac{N}{\langle N \rangle})$$

Koba. Nielsen, Olesen (1972)

$$\mathsf{KNO} \rightarrow \omega [N] \sim \langle N \rangle$$

< ロト < 同ト < ヨト < ヨト


E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

æ

25/16

Scaled variance for identified hadrons (p, K, π): models $_{p+p}$

M. Mackowiak-Pawlowska [for the NA61/SHINE collaboration], PoS(CPOD 2013)048

E. Andronov for the NA61/SHINE collaboration

SPbSU, Laboratory of Ultra-High Energy Physics

26/16

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <