

Presentation On

Beam Energy Scan of Specific Heat through Temperature Fluctuations

Sumit Basu

Sandeep Chatterjee

Rupa Chatterjee

Tapan K Nayak

OUTLINE

- 1 Prelude & Motivation
- 2 Definition : Temperature and Sp. Heat
- ③ Methodology
- (4) Event By event : Global Fluctuation

Result Data and Model 0-5% Central

- (1) Within The Event : Local Fluctuation
- 2 Summary & Conclusion

(Uli Heinz, arXiv:1304.3634)

3. Statistical fluctuations

How to Measure Temperature?

$$\langle m_T \rangle = \frac{\int_0^\infty p_T \, dp_T \, m_T \, exp.(-m_T/T_{eff})}{\int_0^\infty p_T \, dp_T \, exp.(-m_T/T_{eff})}$$
$$= \frac{2T_{eff}^2 + 2m_0 T_{eff} + m_0^2}{m_0 + T_{eff}}$$

$$\langle m_T \rangle = \frac{2T_{eff}^2 + 2m_0 T_{eff} + m_0^2}{m_0 + T_{eff}}$$

• But limit is the problem : and fit as well

$$\langle p_t \rangle = \frac{\int_a^b p_t^2 F(p_t) dp_t}{\int_a^b p_t F(p_t) dp_t} \qquad -- > \qquad \langle p_t \rangle = 2T + \frac{a^2 e^{-a/T} - b^2 e^{-b/T}}{(a+T)e^{-a/T} - (b+T)e^{-b/T}}$$

Def. Temperature & Sp. Heat

Radial flow

Where, $f(eta_{\mathrm{T}}) pprox m_0 \langle eta_{\mathrm{T}}
angle$

• We Define

 $\frac{1}{C} = \frac{(\varDelta T_{\rm kin}^2)}{T_{\rm kin}^2} \approx \frac{(\varDelta T_{\rm eff}^2)}{T_{\rm kin}^2}$

Sp. Heat

$$c_v = \frac{C}{\langle n \rangle}$$

Dimensionless Quantity

 $T \text{eff} = T_{\text{kin}} + f(\beta_{\text{T}}).$

$$\frac{C_v}{T_{Kin}^3}$$

Methodology

3

VECC

Prelude

Prelude

Result : CERES

Fixed Target Pb – Pb CERES Collab.

Collision energy (GeV)	$\sqrt{s_{NN}}$ (GeV)
20 A	6.27
30 A	7.62
40 A	8.73
80 A	12.3
158 A	17.3

 $(1.1 < y_{\pi}^* < 2.6)$

Result : CERES

5

VECC

Result : STAR

Entries Arb. Unit)

Collider Au –Au STAR Collab.

~…

0.8

0.6

 $\langle \, \boldsymbol{p}_{_{T}} \, \rangle$

0.4

VECC

Au+Au

Result : STAR

Collider Au-Au

STAR Collab.

Entries (Arb. Unit)

Result : AMPT

HRG Model

8

VECC

Swagato et. Al PhysRevD.90.094503

Result : c_V/T^3

Result : c_V/T^3

9 VECC

Result : c_V/T^3

9

VECC

Local Fluctuation

 \rightarrow Getting Mean and RMS

5. Event by Event We measure ${\rm F}_{\rm bin}$ and it's Distribution.

Local Fluctuation

Temporal Evolution:

Local Fluctuation

Temporal Evolution:

Summary

- Heat Capacity and Sp. Heat can be Calculated from Event-by-Event (E-by-E) Temperature Fluctuations:
 - Prospect for RHIC BES to calculate Specific Heat C_v/T³ from Temperature fluctuations
 - A comparison with model and data with available theory is shown
- Local Temperature Fluctuations map similar to CMBR
 - In 6x6 bins local fluctuations of temperature fluctuations in shown for model

THANK YOU ALL

- Only possible in LHC energy, may be at Top RHIC energy.
- Weather there is spatial patches in the temperature distribution?
- Indicating local fluctuation or hot spot position?
- ✤Is it 1 to 1 corresponds?

Can We estimate?? How to quantify ? Is that completely washed out?

Open up a new avenue to characterize heavy ions collisions,

Strangeness in Quark Matter SQM 2015

T_{kin} (GeV)

0.05

0

0.1

0.2

(b)

Back Up

60

40

20

0

1

SIS

AGS SPS

kin

kin

10²

STAF

T_{ch}

ch

T_{ch}

√S_{NN} [GeV]

☆

10

STAR Collab. Nucl. Phys. A904-905 (2013)