

(ANTI-)STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS

Pierre Moreau

for the PHSD group

Strangeness in Quark Matter 2015, Russia

Introduction HIC BES Ingredients

Conclusion

From NICA to LHC, passing by FAIR and RHIC...

- Explore the QCD phase diagram and properties of hadrons at high temperature or high baryon density
- Phase transition from hadronic to partonic matter
- Goal: Study the properties of strongly interacting matter under extreme conditions from a microscopic point of view

Introduction HIC BES Ingredients

Conclusion

From NICA to LHC, passing by FAIR and RHIC...

- Explore the QCD phase diagram and properties of hadrons at high temperature or high baryon density
- Phase transition from hadronic to partonic matter
- Goal: Study the properties of strongly interacting matter under extreme conditions from a microscopic point of view

Realization: dynamical many-body transport approach

- Explicit parton-parton interactions, explicit phase transiton from hadronic to partonic degrees of freedom
- Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W.Cassing, E.Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W.Cassing, EPJ ST 168 (2009) 3

(Anti-)strangeness production in heavy ion collisions

Dynamical Quasi-Particle Model (DQPM)

BES

Ingredients

The QGP phase is described in terms of interacting quasiparticles with Lorentzian spectral functions:

HIC

$$\rho_i(\omega,T) = \frac{4\omega\Gamma_i(T)}{(\omega^2 - \mathbf{p}^2 - M_i^2(T))^2 + 4\omega^2\Gamma_i^2(T)} \qquad (i = q, \bar{q}, g)$$

Properties of quasiparticles are fitted to the lattice QCD results:

PHSU

Introduction

Masses and widths of partons depend on the temperature of the medium

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

3

Conclusion

Ingredients

Conclusion

Stages of a collision in PHSD

- String formation in primary NN collisions
- String decays to pre-hadrons (baryons and mesons)

Ingredients

Conclusion

Stages of a collision in PHSD

- String formation in primary NN collisions
- String decays to pre-hadrons (baryons and mesons)

- Formation of a QGP state if $\epsilon > \epsilon_c = 0.5 \text{ GeV.fm}^{-3}$
- Dissolution of new produced secondary hadrons into massive colored quarks and mean-field energy

 $B
ightarrow qqq~(\bar{q}\bar{q}\bar{q}),~m
ightarrow q\bar{q}~+~U_q$

- DQPM define the properties (masses and widths) of partons $m_q(\epsilon)$ $\Gamma_q(\epsilon)$
- ... and mean-field potential at a given local energy density $\boldsymbol{\epsilon}$
 - $U_q(\epsilon)$

HIC BES

Ingredients

Conclusion

Stages of a collision in PHSD

Pierre Moreau

- Propagation of partons, considered as dynamical quasiparticles, in a self-generated mean-field potential from the DQPM
- EoS of partonic phase: ,crossover' from Lattice QCD fitted by DQPM

20

HIC BES Ingredients

Conclusion

Stages of a collision in PHSD

HIC BES

Ingredients

Conclusion

Stages of a collision in PHSD

Ingredients

Conclusion

Stages of a collision in PHSD

Hadron-string interactions – off-shell HSD

 Elastic and inelastic collisions between baryons (B), mesons (m) and resonances (R)

Distribution of hadron collisions as a function of time and collisional energy:

Conclusion

Stages of a collision in PHSD

t = 0.1 fm/c

Conclusion

Stages of a collision in PHSD

t = 1.63549 fm/c

AT MENU CL

Conclusion

Stages of a collision in PHSD

t = 2.06543 fm/c

Conclusion

Stages of a collision in PHSD

t = 3.20258 fm/c

Conclusion

Stages of a collision in PHSD

t = 5.56921 fm/c

Conclusion

Stages of a collision in PHSD

t = 8.06922 fm/c

Au + Au $\sqrt{s_{NN}}$ = 200 GeV b = 2.2 fm – Section view

- Baryons (559)
- Antibaryons (139)
- Mesons (2686)
- Quarks (2628)
- Gluons (442)

Conclusion

Stages of a collision in PHSD

t = 10.5692 fm/c

Conclusion

Stages of a collision in PHSD

Conclusion

Stages of a collision in PHSD

Partonic energy fraction in central A+A

- At SPS, only a small part of the initial energy is converted into the QGP phase
- At top RHIC energies, the QGP phase at midrapidity contains roughly 90% of the energy

Time evolution of the partonic energy fraction for different energies:

Transverse mass spectra (PHSD – HSD)

- With the HSD model, the high-pT spectra is not described properly especially at high energies where the parton energy fraction is major
- At low SPS energies, the difference is less visible since the partonic phase is not predominant

Transverse mass spectra for pions and kaons at different energies:

Central Pb+Pb – SPS energies

Central Au+Au – RHIC

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215; E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

(Anti-)strangeness production in heavy ion collisions

Conclusion

Au-Au at Top RHIC energies

HIC

- At high energies, particles and antiparticles are produced in quasi-equal quantities at midrapidity whatever the centrality of the collision
- Anti-baryon absorption at low pT is visible

Conclusion

Au-Au at Top RHIC energies

HIC

- At high energies, particles and antiparticles are produced in quasi-equal quantities at midrapidity whatever the centrality of the collision
- Anti-baryon absorption at low pT is visible

HIC BES

Ingredients

Conclusion

Au-Au at BES @ RHIC energies

At low energies, a clear difference appears between the production of particles and antiparticles, and also between positively and negatively charged mesons

Production at midrapidity dN/dy:

Conclusion

Rapidity spectra

- At high energies, the hadrons produced at midrapidity come mostly from the QGP phase
- At high rapidity, particles are more produced than antiparticles due to the high baryon density
- At low energies, the stopping of initial nucleons induces a high baryon density even at midrapidty which favors the production of baryons compared to antibaryons

Rapidity spectras:

Conclusion

Rapidity spectra

- At high energies, the hadrons produced at midrapidity come mostly from the QGP phase
- At high rapidity, particles are more produced than antiparticles due to the high baryon density
- At low energies, the stopping of initial nucleons induces a high baryon density even at midrapidty which favors the production of baryons compared to antibaryons

Conclusion

Rapidity spectra

- At high energies, the hadrons produced at midrapidity come mostly from the QGP phase
- At high rapidity, particles are more produced than antiparticles due to the high baryon density
- At low energies, the stopping of initial nucleons induces a high baryon density even at midrapidty which favors the production of baryons compared to antibaryons

Conclusion

Rapidity spectra

- At high energies, the hadrons produced at midrapidity come mostly from the QGP phase
- At high rapidity, particles are more produced than antiparticles due to the high baryon density
- At low energies, the stopping of initial nucleons induces a high baryon density even at midrapidty which favors the production of baryons compared to antibaryons

Beam energy scan study

Production at midrapidity as a function of the collisional energy:

- By decreasing the collisional energy, the more the composition of produced particles is conditioned by the composition of the initial state
- At the highest energies, the composition of produced particles at midrapidity is conditionned by the plasma composition

Conclusion

Strange baryon production

D Multi-step production of multi-strange baryons Ξ and Ω:

Hyperon (Y = Λ , Σ) production

 $\pi + N \leftrightarrow K + Y$ $N + N \leftrightarrow N + Y + K$ $N + \bar{K} \leftrightarrow Y + \pi$

Strange baryon production

Introduction HIC

D Multi-step production of multi-strange baryons Ξ and Ω:

BES

Ingredients Conclusion

Introduction HIC

D Multi-step production of multi-strange baryons Ξ and Ω:

BES

Ingredients

Conclusion

D Multi-step production of multi-strange baryons Ξ and Ω:

HIC

BES

Ingredients

- At low energies, the production of multistrange baryons comes mostly from the hadronic processes
- QGP phase plays an important role in the production of anti-multi-strange baryons

Conclusion

Ingredients for multi-strange baryon production

Ingredients

BES

Implementation of charge-channel decomposition of strangeness exchange reactions

HIC

Introduction

5 : $d\sigma/d\Omega$ ($\overline{K^0}$ + $\Sigma^+ \rightarrow \pi^+$ + Ξ^0) [mb.sr⁻¹]

1.0

0.0

- Taken from the coupled channel approach based on a SU(3)-invariant hadronic Lagrangian from
- C.H. Li & C.M. Ko, Nucl.Phys. A712 (2002) 110-130

[GeV] v₀s-√s

 $\bar{K} + \Lambda / \Sigma \leftrightarrow \Xi + \pi$

Conclusion

2.5

2.0

1.5 1.0 0.5

(Anti-)strangeness production in heavy ion collisions

Rapidity spectra - Channel decomposition

- □ (Anti-)strange baryons are dominantly produced by the QGP phase at mid-rapidity
- Production of strange baryons through hadronic processes are favoured at high rapidity regions where the fragments of initial nuclei are situated
- Even at high energies, the production of Ξ through strange exchange reactions is about 30% of the total production

Rapidity spectra - Channel decomposition

- (Anti-)strange baryons are dominantly produced by the QGP phase at mid-rapidity
- Production of strange baryons through hadronic processes are favoured at high rapidity regions where the fragments of initial nuclei are situated
- Even at high energies, the production of Ξ through strange exchange reactions is about 30% of the total production

Rapidity spectra - Channel decomposition

- (Anti-)strange baryons are dominantly produced by the QGP phase at mid-rapidity
- Production of strange baryons through hadronic processes are favoured at high rapidity regions where the fragments of initial nuclei are situated
- □ Even at high energies, the production of Ξ through strange exchange reactions is about 30% of the total production

Introduction HIC BES Ingredients Conclusion

Ingredients for multi-strange baryon production

- Implementation of hyperon-hyperon reactions
- Taken from the coupled channel approach based on a SU(3)-invariant hadronic Lagrangian from
- F. Li, L. Chen, C.M. Ko, and S.H. Lee,

Born diagrams for the reactions $\Lambda\Lambda \to N\Xi$, $\Lambda\Sigma \to N\Xi$, and $\Sigma\Sigma \to N\Xi$

Note: this cross-section is not considered in the results presented here

By Alessia Palmese

Phys. Rev. C 85, 064902

Conclusion

- By decreasing the collisionnal energy, more differences appear between the production of particle and antiparticle, even at midrapidity regions
- Partonic and hadronic processes are both necessary to approach the yield of multi-strange baryons (work in progress)
- Cross sections from the DQPM at finite chemical potential may also play a significant role at low collisional energy

Signatures from a chiral phase transition are under study

Conclusion

Pierre Moreau

- By decreasing the collisionnal energy, more differences appear between the production of particle and antiparticle, even at midrapidity regions
- Partonic and hadronic processes are both necessary to approach the yield of multi-strange baryons (work in progress)
- Cross sections from the DQPM at finite chemical potential may also play a significant role at low collisional energy

Signatures from a chiral phase transition are under study

THANK YOU FOR YOUR ATTENTION