Can the MPD at NICA "see" the baryon stopping signal ?

Sergej Merts, Oleg Rogachevsky

SQM 2015 Dubna

At which incident energy an onset of deconfinement happen?

What is the order of the deconfinement transition at high baryon densities?

Is there a critical end point in the phase diagram?

NICA experiments

MPD

BM@N

$$\sqrt{s_{_{NN}}} = 4 - 11 \text{ GeV}$$

$$E_{beam} \leq 4.5 \, AGeV$$

Goal

J.D.Bjorken,PRD 27,140 (1983)

The net-baryon rapidity distributions are though to reflect the initial distribution of baryonic matter in the very first moment of the collisions

Tools for physics simulations for NICA

I) Direct approach based on transport codes:

Particle trajectories are followed;

Properties of the medium are encoded in propagators and cross sections

- \rightarrow UrQMD (Aichelin et al.),
- \rightarrow PHSD (Bratkovskaya, Cassing, et al.),
- → PHSD + SACA (Bratkovskaya, Aichelin, LeFevre, et al.) LA QGSM SHIELD

II) Hybrid approach:

Joins hydrodynamic evolution of a (multi-)fluid system described by an EoS with Particle transport via a procedure called "particlization" (Karpenko) Particularly suitable for studying effects of a strong phase transition in model EoS

- a) Hybrid: UrQMD + hydro + hadronic cascade (H. Petersen et al.)
 - \rightarrow PT in hydro stage only
- b) 3-fluid hydrodynamics (Ivanov) + particlization (Karpenko)
 - \rightarrow PT in baryon stopping regime already!

Simulation of the MPD detector response GEANT3(4)

PHSD

Event set: 40k AuAu @ √s_{NN} = 9 GeV [0-5%]

The most reliable region |eta| < 1.2; $0.4 < p_t [GeV/c] < 0.8$

Result: PHSD input \rightarrow GEANT+MPD detector reproduces the rapidity distribution well

Baryon Stopping

$$C_{y} = \left(y_{\text{c.m.}}^{3} \frac{d^{3}N}{dy^{3}} \right)_{y=y_{\text{c.m.}}} / \left(y_{\text{c.m.}} \frac{dN}{dy} \right)_{y=y_{\text{c.m.}}}$$
$$= \left(y_{\text{c.m.}} / w_{s} \right)^{2} (\sinh^{2} y_{s} - w_{s} \cosh y_{s}).$$

Yu.B. Ivanov, Phys. Rev. C 87, 064904 (2013)

a wiggle irregularity of Cy at midrapidity

Cy = reduced curvature of net-proton rapidity distribution at midrapidity

3FD conclusions

Deconfinement scenarios look preferable at $\sqrt{s_{NN}} > 4 \text{ GeV}$

directed flow:

High sensitivity of the proton directed flow to the EoS v1 indicates the crossover deconfinement transition in a wide range of energies $4 < \sqrt{s_{_{NN}}} < 20$ GeV. QGP EoS's in the high-baryon-density sector should be stiffer Similar constraint from astrophysics

elliptic flow: Low sensitivity to the EoS. A stronger EoS dependence for antibaryons and K – No qualitative signals of deconfinement

baryon stopping, i.e. net-proton rapidity distributions: Irregularity signals deconfinement onset (no reliable data yet)

3+1D viscous hydro-cascade model (Hybrid UrQMD)

PHYSICAL REVIEW C 91, 064901 (2015)

3+1D viscous hydro+cascade model was applied for A+A collisions at RHIC Beam Energy Scan energies (s = 7.7 - 39 GeV), and for SPS energy points

Cascade-hydro-cascade approach:

Initial state: UrQMD cascade

S.A. Bass et al., Prog. Part. Nucl. Phys. 41 255-369, 1998

Hydrodynamic phase: numerical 3+1D hydro solution via original relativistic viscous hydro code

Iu. Karpenko, P. Huovinen, M. Bleicher, arXiv:1312.4160

Hydro starts at $\tau = \sqrt{t^2 - z^2} = \tau_0$ (red curve): { $T^{0\mu}, N_b^0, N_q^0$ } of fluid = averaged { $T^{0\mu}, N_b^0, N_q^0$ } of particles Fluid \rightarrow particle transition

 $\varepsilon = \varepsilon_{sw} = 0.5 \text{ GeV/fm}^3$ (blue curve): { $T^{0\mu}, N_b^0, N_q^0$ } of hadron-resonance gas = { $T^{0\mu}, N_b^0, N_q^0$ } of fluid

Equations of state for hydrodynamic phase

Chiral model

 $\tau_0 = \frac{2R}{\gamma v_z}$

- coupled to Polyakov loop to include the deconfinement phase transition
- good agreement with lattice QCD data at µ_B = 0, also applicable at finite baryon densities
- (current version) has crossover type PT between hadron and quark-gluon phase at all μ_B
- Hadron resonance gas + Bag Model (a.k.a. EoS Q)
 - hadron resonance gas made of u, d quarks including repulsive meanfield
 - the phases matched via Maxwell construction, resulting in 1st order PT

J. Steinheimer, S. Schramm and H. Stocker, J. Phys. G 38, 035001 (2011); P.F. Kolb, J. Sollfrank, and U. Heinz, Phys.Rev. C 62, 054909 (2000).

Central Pb-Pb from NA49

Phys.ReV.Lett.82,2471(99)

Pb-Pb at 158 A.GeV/c

Rather large but not complete stopping.

The rapidity loss $\delta y = 1.76 \pm 0.05$ for PbPb and for SS: 1.63 ± .16.

Net-p energy systematic

At RHIC the midrapidity region is almost net-proton free. Pair baryon production dominates at RHIC.

Au+Au collisions at AGS

p+p picture is recovered in peripheral collisions

In central collisions the rapidity distribution peaks at mid-rapidity

Strong centrality dependence.

3FD & experiments

robustness

Yu. Ivanov & D. Blaschke, arxiv:1504.03992

- "wiggle" formed in the nonequilibrium compresion
- stage of the collision, where $\ensuremath{\mathsf{pT}}$ only in 3FH
- robust against serious p cuts
- T- at high p (1 2 GeV/c) in convex region
- T- at low p (0.2 1 GeV/c) in concave region
- T- required accuracy in Cy determination: $\Delta Cy < 2$

Relative mean rapidity loss

0.8 Ď ÷ <ðy >/y 0.6 þ \$ 0.4 Result from PLB 677(2009) 267: This work: 0.2 ÷ SPS 40A GeV $\sqrt{S_{NN}} = 17 \text{ Gev}$ RHIC $\sqrt{S_{NN}} = 62.4 \text{ GeV}$ AGS 6,8,10 AGeV \square 11A GeV √S_{NN} = 200 GeV 0 10² 10 $\sqrt{s_{_{NN}}}$ GeV

arXiv:0909.5046

ArXiv:0909.5046 + 3FD

Beam rapidity dependence

arXiv:0909.5046

3FD

net-baryon rapidity density

$$\frac{2}{N_{part}} \frac{dN^{B-\bar{B}}}{dy'}$$

Normalized projectile net-baryon rapidity density

- the rapidity distribution peaks at lower y ' values with higher colliding energies from AGS to top SPS energy.
- the mean rapidity loss increases with beam energy

Cross-over region

Georg Wolschin

Data from

Phys. Lett. B 677, 267 (2009)

NA49 PRL 82, 2471 (1999)

NA49 2010 (C. Blume et al.)

