Strangeness in Quark Matter 6-11 July 2015, Dubna, Russia

Entropic and **Enthalpic** Phase Transitions

in high energy density matter

Igor Iosilevskiy

Joint Institute for High Temperature (Russian Academy of Science) Moscow Institute of Physics and Technology (Federal Research University)

Van der Waals model of gas-liquid phase transition

$$(P + a\rho^2)(1 - \rho b) = \rho T,$$

Johannes D. Van der Waals (1837 – 1923) On the Continuity of the Gaseous and Liquid States, Ph.D. Diss. Leiden, 1873

Debye – Hückel non-ideality correction

Debye and Hückel, Phys. Zeitschr., 24, 8, 1923.

Phase transitions of 1st and 2nd order

Пауль Эренфест (1880 - 1933)

1st- and 2nd-order phase transitions (1933)

Hypothesis on 1st order phase transition "dielectric-conductor" in metals

Lev Landau

Yakob Zel'dovich (1914 - 1987)

Landau L. and Zel'dovich Ya., *Acta Physico-Chimica URSS*, **18**, (1943) On the relation between the liquid and the gaseous states of metals

"Plasma" phase transitions theory (Coulomb attraction + quantum repulsion)

Andrew Starostin

Henry Norman

Norman H., Starostin A. *High Temperature*, **6**, 410 (1968) *Plasma phase transitions*

When one meets unexplored phase transition: - what should he classify **?**

1st or 2nd order ? Isostructural or non-isostructural ? Enthalpic or entropic ? Congruent or non-congruent ?

Do we use **Coulomb-less approximation** *or* we **take into account** all **consequences** *of* **long-range nature** *of* **Coulomb** interaction **?**

Scenario of phase transformation in two-phase region –

- Macro- or Mesoscopic?

Phase transitions *in* high energy density nuclear matter

Enthalpic *or* Entropic ?

Phase diagram of matter in ultra-high energy and density

NICA White Book

After David Blaschke, NICA Workshop, Dubna, 2009

Impact and fireball hydrodynamics in RHIC

Phase transitions in matter of ultra-high energy and density

Phase transitions in matter of ultra-high energy and density

"Gas-liquid" phase transition in Coulombless system { *p,n,N(A,Z)*} / GLPT /

Phase transitions in matter of ultra-high energy and density

$T\text{-}\mu$ phase diagram of symmetric GLPT and QHPT

<u>Non-congruence of the nuclear liquid-gas and the deconfinement phase transitions</u> Matthias Hempel, Veronica Dexheimer, Stefan Schramm, Igor Iosilevskiy (*Phys. Rev. C*, **88**, 2013)

arXiv:1302.2835

<u>NB</u> !

Gas-liquid and quark-hadron phase transitions are often considered as similar to each other within simple scaling / GLPT ~ ~ QHPT/

Gas-liquid *and* Quark-hadron phase transitions are often considered as similar

Gas-liquid *and* quark-hadron phase transitions are often considered as similar

Gas–liquid, Quark–hadron *and* Hadron– Δ -meson phase transitions are considered as similar

All three phase transitions: - are they isomorphic?

GLPT and QHPT look like equivalent in $T-\mu$ phase diagram (symmetric case)

 $T - \rho$ phase diagram of symmetric Coulomb-less GLPT and QHPT (the same structure in old and new calculations)

M. Hempel, V. Dexheimer, S. Schramm & I. Iosilevskiy // Phys. Rev. C 88 (2013)

Enthalpic and entropic phase transitions in electromagnetic plasma

Gas-liquid and ionization-driven phase transitions in xenon

Gas-liquid and deconfinement-driven PT in dense nuclear matter

General: "delocalization-driven" PT-s in matter of extreme state

Enthalpic and entropic phase transitions in nuclear matter and electromagnetic plasma

Phase transitions: Enthalpic vs. Entropic ?

G = H - TS

P-T phase diagram for GLPT and QHPT

P - T phase diagram of symmetric Coulomb-less GLPT and QHPT

<u>Non-congruence of the nuclear liquid-gas and the deconfinement phase transitions</u> M.Hempel, V.Dexheimer, S.Schramm and I.Iosilevskiy // Phys. Rev. C, 88 (2013)

P-T diagram of plasma phase transitions

P-T diagram of plasma phase transition

Ionization- and Dissociation-driven phase transitions in H₂

(mostly entropic)

Non-standard behavior: $(dP/dT)_{binodal} < 0$ or $(dP/dT)_{binodal} \approx 0$

Entropy-driven fluid-fluid phase transitions (N₂)

B. Boates, S. Bonev, Phys. Rev. Lett., 102 (2009) // ab initio – DFT/MD

Entropy-driven fluid-fluid phase transitions

Experiment

Experiment

Enthalpic vs Entropic Phase Transitions?

<u>NB</u> !

All polymorphic and all fluid-fluid PTs are Entropic !

Enthalpic vs. Entropic phase transitions

P-V phase diagram

Ionization-driven ("plasma") phase transition

Abnormal Thermodynamics Region - ATR

Normally positive cross derivatives became *negative simultaneously* !

Abnormal thermodynamics in the neighborhood of entropic phase transition -- (AT-region)

ATR – abnomal thermodynamics region

ZB – **Zero-boundary** (ATR boundary)

 $(\partial V/\partial T)_P > 0$ $(\partial T/\partial P)_{\rm S} > 0$

$$\left| \left(\frac{\partial P}{\partial U} \right)_V = 0 \right|$$

$$(\partial V/\partial T)_P = 0$$

 $(\partial V/\partial T)_P < 0$

 $(\partial T/\partial P)_{\rm S} < 0$

$$(\partial T/\partial P)_S = 0$$

Third branch with $(\partial P/\partial V)_T < 0$ appears on isotherms in spinodal region !

Hypothetical dissociation-driven PT

Not one, but three isotherms intersect critical point in P-V plane!

Spinodal point of rare phase may be of higher density than spinodal point of dense phase !

Hypothetical dissociation-driven (entropic) PT

<u>NB</u>!

Iso-*T* **spinodal** $\{(\partial P/\partial V)_T = 0\}$ is located **outside** of **binodal**

Iso-*S* spinodal $\{(\partial P/\partial V)_S = 0\}$ is located outside of iso-*T* spinodal !

Multy-layered structure of thermodynamic surfaces for entropic phase transition over p-V plane T(p,V), U(p,V), S(p,V)...

Path under two-phase region via lower layer Shock P(V)iso-V **OHPT** p [MeV/fm³] iso-V T=0iso-S 10^{2} GLPT 2-phase region) 00 5 50 100 150 200 V_0 n T=0T [MeV]

Gas-liquid phase transition (Van-der-Waals-like)

Entropic (*deconfinement-driven*) **phase transition**

SU(3) model (Veronica Dexheimer & Stefen Schramm)

Crossing of two-phase region via isochoric heating

Multy-layered structure of thermodynamic surfaces for entropic phase transition over p-V plane T(p,V), U(p,V), S(p,V)...

Gas-liquid phase transition (Van-der-Waals-like)

Entropic (*deconfinement-driven*) phase transition

SU(3) model (Veronica Dexheimer & Stefen Schramm)

Crossing of two-phase region via isochoric heating

Multy-layered structure of thermodynamic surfaces for entropic phase transition over p-V plane T(p,V), U(p,V), S(p,V)...

Gas-liquid phase transition (Van-der-Waals-like)

Entropic (*deconfinement-driven*) phase transition

SU(3) model (Veronica Dexheimer & Stefen Schramm)

Crossing of two-phase region via isochoric heating

Abnomal topology of binodals and spinodals in the region of entropic phase transition $(T - \rho \text{ diagram})$

Abnomal features of entropic phase transition are due to multi-layered structure of thermodynamic surfaces !

Iosilevskiy I. // in "Physics of Extreme States of Matter", Eds. V. Fortov et al. (Chernogolovka: IPCP RAS), Russia, (2013) 136.

Abnomal topology of binodals and spinodals in the region of entropic phase transition $(T - \rho \text{ diagram})$

Abnomal features of entropic phase transition are due to multi-layered structure of thermodynamic surfaces !

Iosilevskiy I. // in "Physics of Extreme States of Matter", Eds. V. Fortov et al. (Chernogolovka: IPCP RAS), Russia, (2013) 136.

Abnomal features of entropic phase transition (due to multi-layered structure of thermodynamic surfaces !) $(T - \rho \text{ diagram})$

<u>NB</u> !

New (additional) region of metastable state $\Leftrightarrow (\partial P/\partial V)_T \leq 0$ New (additional) singular point (no-named still) $\Leftrightarrow (\partial P/\partial V)_T = \infty$!

{ Iosilevskiy I. // (in preparation) }

Features of entropic phase transitions (ionization- and dissociation-driven)

Entropic PT obeys to anomalous thermodynamics

- negative Gruneizen parameter
- negative thermal pressure coefficient
- negative entropic pressure coefficient $(\partial P/\partial S)_V < 0$
- negative thermal expansion coefficient
- etc. etc.
- abnomal order of isotherms (!)
- abnomal order of isentropes (!)
- abnomal order of iso-H and iso-U (!)
- abnomal order of shock adiabats (Hugoniots !)
- -.... etc. etc.
- abnomal form of isotherms in two-phase region
- abnomal interconnection of spinodals and binodals
 etc. etc.

 $(\partial P/\partial U)_V < 0$ $(\partial P/\partial T)_V < 0$ $(\partial P/\partial S)_V < 0$ $(\partial V/\partial T)_P < 0$

I. Iosilevskiy, Entropic Phase Transitions, in "Physics of Extreme States of Matter" Eds. V. Fortov et al. J. Phys: Conf. Ser. (IOP Pub.) 2015

Outlook

Inventory of new hypothetical phase transitions

R.Pisarski & L.McLerran, EMMI-Wroclaw /2009/, QCD-Bad Honnef /2010/

What type of all these hypothetical phase transitions: - are they enthalpic or entropic PTs?

Gas–liquid, Hadron – Δ -meson and quark–hadron phase transitions are considered as similar

What is the type of new phase transition: - enthalpic or entropic?

Conclusions and perspectives

- Visible equivalence of gas-liquid-like and quark-hadron phase transitions
 in high energy density nuclear matter is illusive.
- Both phase transitions belong to **fundamentally different classes**:
- Gas-liquid PT is enthalpic, while Quark-hadron PT is entropic.
- In spite of many order difference in density and energy of deconfinementdriven PT and ionization-driven PT (dissociation-driven, polimerization-driven...) the both have many common features because both are entropic PTs.
- Properties of entropic PTs differ significantly from those of enthalpic PTs.
- Anomalous features of entropic phase transition are due to multi-layered structure of thermodynamic surfaces { U(p,V), T(p,V), S(p,V) ... }

Features of phase transitions in cosmic matter and in the laboratory

Support: INTAS 93-66 // ISTC 3755 // RAS Scientific Program "Physics of Extreme States of Matter"

Russian Scientific Fund (Grant No: 14-50-00124)

Acknowledgements to Victor Gryaznov for calculations of dissociation phase transition in hydrogen