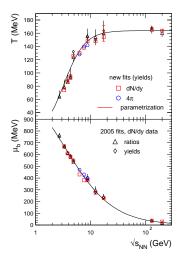

Flavor hierarchy in freezeout

Sandeep Chatterjee (sandeepc@vecc.gov.in) VECC, Kolkata, India

Strangeness in Quark Matter, Dubna, Russia 06-11 July, 2015

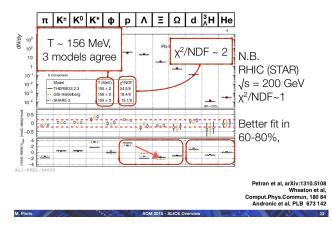
Multiple Freezeout on your table top: Salt mixture in water

Freezeout in HIC


- Freezeout is a result of competition between 2 effects: constituent interactions and fireball expansion- Cross section vs Dilution
- In the late stage of a heavy ion collision (HIC), the rate of collisions between the constituents can no longer cope with the expansion rate. As a result, hadrons start freezing out.
- Simple assumption: All strong interaction rates are same. Hence single chemical freezeout (1CFO).

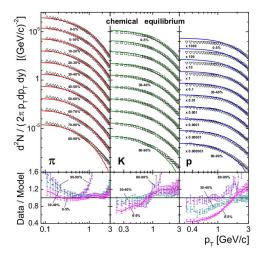
Single Chemical Freezeout: 1CFO

Standard practice:


All the hadrons CFO at the same (T, μ_B) surface. This provides an overall good qualitative picture of CFO at $\sqrt{s_{\rm NN}} \sim 2 - 200$ GeV with ~ 4 params.

Andronic et al: 0812. 1186

1CFO at LHC


Equilibrium SHM Fits in Central Pb-Pb

Floris: SQM 2015

ALICE

1CFO at LHC

Begun et al: 1405.7252

Revisitng our 1CFO assumption: When does chemistry freeze out?

Basic observables are the spectra of identified particles; from this one gets yields. Relative yields of hadrons is the outcome of "chemistry".

At early times, fireball is a reactive fluid. Reaction rates depend on local densities as well as rates of mixing.

When does isospin freeze out?

• The rates for processes $p + \pi^- \leftrightarrow n + \pi^0$, remain high at $\simeq 150$ MeV, because $m_n - m_p$ is small and the yield of pions is large. So the chemical freezeout of baryon isospin can be delayed. The $p \leftrightarrow n$ reaction may proceed without suppression right up to kinetic freezeout Asakawa, Kitazawa, 2011

Can the K and π freeze separately?

• Indirect transmutations of K and π involve strange baryons in reactions such as $\Omega^- + K^+ \leftrightarrow \Xi^0 + \pi^0$. These have very high activation thresholds. There is no physics forcing K and π to freezeout together. But K and ϕ are resonantly coupled, so freeze out together.

SC, Godbole, Gupta, 2013

Double Chemical Freezeout: 2CFO

- 'Isospin changing' reactions are last to freezeout $(p + \pi^0 \leftrightarrow n + \pi^+)$ (Asakawa, Kitazawa 2011)
 - low activation energy
 - high pion density
- 'Strangeness changing' reactions can freezeout earlier $(\Omega^- + K^+ \leftrightarrow \Xi^0 + \pi^0)$ (SC, Godbole, Gupta, 2013)
 - High activation energy
 - Ω and K densities much less compared to that of π ; $\Omega^- + K^+$ reactions much suppressed
- Motivates to propose separate CFO for (strange+hidden strangeness) and non strange hadrons: 2CFO
- T_s , V_s , μ_{B_s} characterise the strange surface
- T_{ns} , V_{ns} , μ_{Bns} characterise the non-strange surface
- Using conservation of baryon number and entropy, 4 parameter fit is sufficient (Bugaev et al, 2013)

Hadron Yields in Thermal Model

• The ideal hadron resonance gas (HRG) partition function Z in the grand canonical ensemble at the time of CFO at a particular beam energy $\sqrt{s_{\rm NN}}$ is given as

$$\log \left[Z\left(\sqrt{s_{\rm NN}}\right)\right] = \sum_{i} \log \left[Z_i\left(T_i\left(\sqrt{s_{\rm NN}}\right), \mu_i\left(\sqrt{s_{\rm NN}}\right), V_i\left(\sqrt{s_{\rm NN}}\right)\right)\right]$$

$$N_{i}^{p} = \frac{\partial}{\partial \left(\frac{\mu_{i}}{T_{i}}\right)} \log [Z]$$

= $\frac{V_{i}T_{i}}{\pi^{2}}g_{i}m_{i}^{2}\sum_{l=1}^{\infty} (-a)^{l+1}l^{-1}K_{2}(lm_{i}/T_{i}) \times \exp \left(l\left(B_{i}\mu_{B_{i}}+Q_{i}\mu_{Q_{i}}+S_{i}\mu_{S_{i}}\right)/T_{i}\right)$

Ratios

• Unlike Flavor Ratio (*R*^{UF}):

$$(N_s^{\rm t}/N_{ns}^{\rm t})^{\rm th} = \exp\left(S\mu_S/T_s\right) \frac{g_s V_s}{g_{ns} V_{ns}} \left(\frac{T_s m_s}{T_{ns} m_{ns}}\right)^{3/2} \times \exp\left(m_{ns}/T_{ns} - m_s/T_s\right) \times \exp\left(\mu_{Bs}/T_s - \mu_{Bns}/T_{ns}\right)$$

• Hence,

$$R_{2\mathsf{CFO}}^{\mathsf{UF}} \sim \left(rac{T_s}{T_{ns}}
ight)^{3/2} \left(rac{V_s}{V_{ns}}
ight) R_{1\mathsf{CFO}}^{\mathsf{UF}}$$

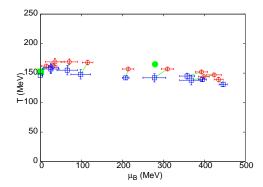
Ratios

• Like Flavor Ratio (*R*^{LF}):

$$N_{i}^{t}/N_{j}^{t} = \left(\frac{g_{i}}{g_{j}}\right) \left(\frac{m_{i}}{m_{j}}\right)^{3/2} \times \exp\left(\left(\left(m_{j}-m_{i}\right)+\left(B_{i}-B_{j}\right)\mu_{B}\right)/T\right)\right)$$

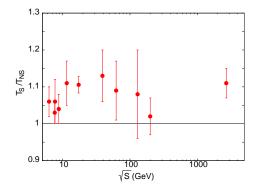
• Hence,

$$R_{\rm 2CFO}^{\rm LF} \sim R_{
m 1CFO}^{
m LF}$$

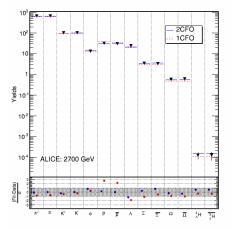

• Anti-particle to particle ratios simplifies even further.

$$\left(\overline{N_{i}^{t}}/N_{i}^{t}\right)^{\text{th}} = \exp\left(-2\left(B_{i}\mu_{B_{i}}+Q_{i}\mu_{Q_{i}}+S_{i}\mu_{S_{i}}\right)/T\right)$$

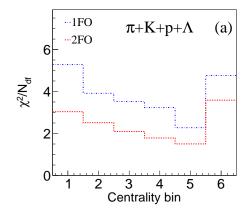
• Hence,


$$R_{\rm 2CFO}^{\rm AP/P} \sim R_{\rm 1CFO}^{\rm AP/P}$$

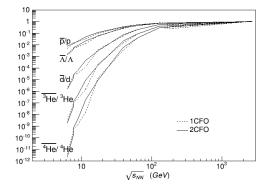
2CFO Freezeout Parameters


SC, Godbole, Gupta: 1306.2006

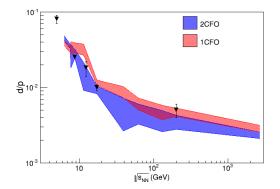
2CFO Freezeout Parameters


SC, Godbole, Gupta: 1306.2006

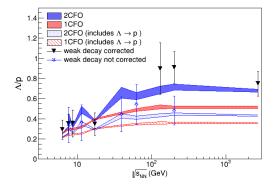
2CFO at LHC: yields


SC, Mohanty: 1405.2632

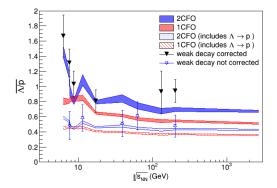
2CFO at LHC: spectra


SC, Mohanty, Singh: 1411.1718

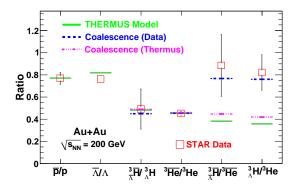
Antiparticle to Particle Ratio


SC, Mohanty: 1405.2632

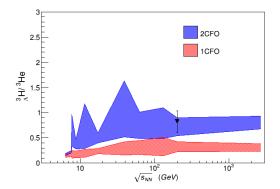
Like Flavor Ratio


SC, Mohanty: 1405.2632

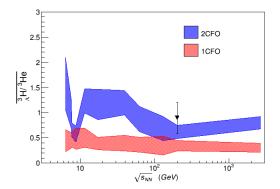
Unlike Flavor Ratio


SC, Mohanty: 1405.2632

Unlike Flavor Ratio


SC, Mohanty: 1405.2632

Unlike Flavor Ratio: Nuclei

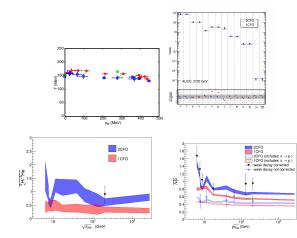

Andronic et al 2011, Cleymans et al 2011, Pal et al 2013

Unlike Flavor Ratio

SC, Mohanty: 1405.2632

Unlike Flavor Ratio

SC, Mohanty: 1405.2632


Other schemes

- Flavor dependence in hadronization- Bellwied et al, 2013; Torres-Rincon et al, 2015
- Post 1CFO employ hadronic afterburner: Microscopic Transport Approach (UrQMD Model). Baryon-antibaryon annihilation main source of correction- Steinheimer et al, 2013
- Introduce additional light and strange chemical non-equilibrium fugacity factors- Petran et al, 2013
- Incomplete hadron spectrum- Bazavov et al, 2014

Summarising..

- Multiple freezeout is a common occurence in nature: from a cooling salt mixture in water to the cooling early universe. A multi-component system naturally freezes over a range in the relevant parameter space.
- Freezeout in the cooling fireball in HIC- Is the freezeout gradual enough to leave an imprint on the data ?
- 1CFO provides an overall good description of the hadrons(nuclei) yields across a wide range of $\sqrt{s_{\rm NN}}$
- Does closer/careful inspection of the data reveal details in freezeout ? Which observables are most sensitive?
- Strange to non strange hadron/nuclei ratios are most sensitive to flavor dynamics at freezeout
- Anomaly with data of Λ/p at LHC, ${}^{3}_{\Lambda}H/{}^{3}He$ at top RHIC have a common origin: flavor dynamics at freezeout
- Influence of additional resonances ?- they will affect the above strange to non strange ratios. On including them, can the above anomalies with data be addressed within 1CFO ? Require input on their branching ratios. Data from the low $\sqrt{s_{\rm NN}}$ (where these heavy resonances do not play a role) FAIR, BES-II can throw more light

Take home

