

The Tsallis Distribution at Large Transverse Momenta

J. Cleymans University of Cape Town, South Africa

Strangeness in Quark Matter (SQM) 2015

JINR, Dubna, Russian Federation

6-11 July 2015

ъ

・ロット (雪) ・ (日) ・ (日)

Work done in collaboration with: M.D. Azmi

C.Y. Wong, G. Wilk, J.L. Cirto, C. Tsallis Phys. Rev. D91 (2015) 114027 C.Y. Wong, G. Wilk, Acta Physica Polonica, B43 (2012) 2047-2054

Tsallis Distribution

Transverse Momentum Distributions

Strange Particles in ALICE

Conclusion

Tsallis Thermodynamics

The Tsallis distribution is given by

$$f(E) = \left[1 + (q-1)\frac{E-\mu}{T}\right]^{-\frac{1}{q-1}},$$

and the thermodynamic quantities *N*, *E*, *P*, *S*, ... are integrals over this distribution.

Asymptotically

$$\lim_{E\to\infty} f(E) = \left(\frac{E}{T}\right)^{-\frac{1}{q-1}}$$

scale is set by T asymptotic behaviour is set by q.

For high energy physics a consistent form of Tsallis thermodynamics for the particle number, energy density and pressure is given by

$$N = gV \int \frac{d^3p}{(2\pi)^3} \left[1 + (q-1)\frac{E-\mu}{T} \right]^{-\frac{q}{q-1}},$$

$$\epsilon = g \int \frac{d^3p}{(2\pi)^3} E \left[1 + (q-1)\frac{E-\mu}{T} \right]^{-\frac{q}{q-1}},$$

$$P = g \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} \left[1 + (q-1)\frac{E-\mu}{T} \right]^{-\frac{q}{q-1}}$$

where T and μ are the temperature and the chemical potential, V is the volume and g is the degeneracy factor. This introduces only one new parameter q which for transverse momentum spectra is always close to 1.

Thermodynamic consistency

$$dE = -pdV + TdS + \mu dN$$

Inserting $E = \epsilon V$, S = sV and N = nV leads to

 $d\epsilon = Tds + \mu dn$

$$d{\sf P}={\sf nd}\mu+{\sf sd}{\sf T}$$

In particular

$$\boldsymbol{n} = \frac{\partial \boldsymbol{P}}{\partial \mu}\Big|_{T}, \quad \boldsymbol{s} = \frac{\partial \boldsymbol{P}}{\partial T}\Big|_{\mu}, \quad \boldsymbol{T} = \frac{\partial \epsilon}{\partial \boldsymbol{s}}\Big|_{n}, \quad \mu = \frac{\partial \epsilon}{\partial n}\Big|_{s}.$$

are satisfied.

イロト イポト イヨト イヨト 三日

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Thermodynamic consistency: an example

$$\begin{aligned} \frac{\partial P}{\partial \mu} &= gV \int \frac{d^3 p}{(2\pi^3)} \frac{p^2}{3E} \frac{\partial}{\partial \mu} f^q \\ &= -gV \int \frac{d^3 p}{(2\pi^3)} \frac{p^2}{3E} \frac{d}{dE} f^q \\ &= -gV \frac{4\pi}{(2\pi^3)} \int_0^\infty dp \, \frac{p^4}{3E} \frac{d}{dE} f^q \\ &= -gV \frac{4\pi}{(2\pi^3)} \int_0^\infty dp \, \frac{p^3}{3} \frac{d}{dp} f^q \quad \text{using} \quad EdE = pdp \\ &= gV \frac{4\pi}{(2\pi^3)} \int_0^\infty dp \, p^2 f^q \\ &= n \end{aligned}$$

◆□▶ ◆@▶ ◆臣▶ ◆臣▶ ─ 臣

In the Tsallis distribution the total number of particles is given by:

$$N = gV \int rac{d^3 p}{(2\pi)^3} \left[1 + (q-1) rac{E-\mu}{T}
ight]^{-rac{q}{q-1}}$$

The corresponding momentum distribution is given by

$$E \frac{dN}{d^3p} = gVE \frac{1}{(2\pi)^3} \left[1 + (q-1) \frac{E-\mu}{T} \right]^{-\frac{q}{q-1}},$$

which, in terms of the rapidity and transverse mass variables, $E = m_T \cosh y$, becomes (at mid-rapidity y = 0 and for $\mu = 0$)

$$\left. rac{d^2 N}{d p_T \ d y}
ight|_{y=0} = g V rac{p_T m_T}{(2\pi)^2} \left[1 + (q-1) rac{m_T}{T}
ight]^{-rac{q}{q-1}},$$

J.C. and D. Worku, J. Phys. **G39** (2012) 025006; arXiv:1203.4343[hep-ph].

For charged particles use:

$$\frac{d^2 N(\text{charged})}{dp_T \ dy}\bigg|_{y=0} = \sum_{i=\pi, \mathcal{K}, \rho, \dots} g_i V \frac{p_T m_T}{(2\pi)^2} \left[1 + (q-1) \frac{m_T}{T}\right]^{-\frac{q}{q-1}},$$

M.D. Azmi and J.C. , arXiv:1501.07217v3[hep-ph].

Tsallis Distribution p-p CMS

Tsallis Distribution p-p

Experiment	\sqrt{s} (TeV)	q	<i>Τ</i> (MeV)	
ATLAS	0.9	$\textbf{1.129} \pm \textbf{0.005}$	74.21 ± 3.55	
ATLAS	7	1.150 ± 0.002	$\textbf{75.00} \pm \textbf{3.21}$	
CMS	0.9	$\textbf{1.129} \pm \textbf{0.003}$	76.00 ± 0.17	
CMS	7	$\textbf{1.153} \pm \textbf{0.002}$	$\textbf{73.00} \pm \textbf{1.42}$	

Values of the q and T parameters to fit the p_T spectra measured by the ATLAS and CMS collaborations.

22

Tsallis fits to strange particles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

23

Fit parameters vs ALICE measurements

Particles	q	T (MeV) Tsallis	T (MeV) ALICE	dN/dy Tsallis	dN/dy ALICE	X ² /NDF Tsallis	X ² /NDF ALICE
K _s ⁰	1.15 ± 0.03	73.67 ± 3.85	168 ± 5	0.182	0.184	2.01/13	10.8/13
Φ	1.14 ± 0.03	79.99 ± 6.12	164 ± 91	0.019	0.021	0.12/1	0.6/1
Λ	1.11 ± 0.008	79.99 ± 5.63	229 ± 15	0.049	0.048	1.38/6	9.6/6
$\Lambda(bar)$	1.11 ± 0.008	70.00 ± 9.8	210 ± 15	0.047	0.047	0.42/6	3.7/6
$\Xi^- + \Xi(bar)^+$	1.11 ± 0.03	75.00 ± 7.5	175 ± 50	0.0096	0.0101	0.189/0*	- #

* The number of data sets is 3 and the number of fit parameters are also 3. So, the NDF = 0

æ

p-p collisions: Summary of results for parameter T

Tsallis: problem in determining parameters T and V

The Tsallis distribution provides an excellent description of the transverse momentum spectra over 14 orders of magnitude up to 200 GeV. Use

$$\frac{d^2 N}{d p_T d y} = g V \frac{p_T m_T}{(2\pi)^2} \left[1 + (q-1) \frac{m_T}{T} \right]^{-\frac{q}{q-1}},$$

Advantages : thermodynamic conistency:

$$n = \frac{\partial P}{\partial \mu}$$
 etc...,

and the parameter T deserves its name since

$$T = \frac{\partial S}{\partial E}$$

Tsallis Distribution p-p

Tsallis Distribution p-p

Tsallis Distribution p-p

Experiment	\sqrt{s} (TeV)	<i>R</i> (fm)	χ^2/NDF	
ATLAS	3.55	$\textbf{4.62} \pm \textbf{0.29}$	0.657503/36	
ATLAS	3.21	5.05 ± 0.07	4.35145/41	
CMS	0.9	$\textbf{4.32} \pm \textbf{0.29}$	0.648806/17	
CMS	7	5.04 ± 0.27	0.521746/24	

Values of *R* and χ^2/NDF parameters to fit the p_T spectra measured by the ATLAS and CMS collaborations.

