

Measurements of strange hadrons K_{S}^{0} , Λ and Ξ from Au+Au collisions at 14.5 GeV in STAR

Muhammad Usman Ashraf (Tsinghua University) For the STAR Collaboration July 7, 2015

Strangeness in Quark Matter SQM 2015 Joint Institute for Nuclear Research 06 July – 11 July, 2015

Outline

- Motivation for RHIC beam energy scan
- STAR detector and K_{S}^{0} , Λ , Ξ reconstruction
- mid-rapidity K_{S}^{0} , Λ , Ξ production in Au+Au 14.5 GeV
 - p_T spectra
 - Particle yields
 - Anti-baryon to baryon ratios
 - Nuclear modification factor: R_{CP}
 - Baryon enhancement: $\overline{\Lambda} / K_{S}^{0}$
- Summary

RHIC BES: study QCD phase diagram

STAR, arXiv:1007.2613

- Beam Energy Scan at RHIC
 - To study the **onset of deconfinement** and **phase boundary**
 - To search for the QCD critical point
- Systematic study of Au+Au collisions at 7.7, 11.5, 14.5, 19.6, 27, 39 GeV (BES Phase-I)

Strangeness is sensitive probe

- Nuclear modification factors at Au+Au 200 GeV
 - less than unity at high p_T
 - Baryon/meson follow different trends
 - → Partonic energy loss & recombination
- Baryon/meson ratio at Au+Au
 200 GeV
 - baryon enhancement at intermediate p_T in central collisions
 - → Parton recombination

STAR, arXiv:1007.2613

The Solenoidal Tracker At RHIC (STAR)

Magnet

ГРС

TPC

ÁR

EEMC

TOF

full azimuthal coverage at

BEMC

- mid-rapidity ($|\eta| < 1.0$)
- π ,K, p identified with dE/dx and TOF
- secondary vertex reconstruction

Yea	ir	√s _{NN} (GeV)	Minimum bias events in Million
201	10	7.7	~ 4 M
201	0	11.5	~ 12 M
201	1	19.6	~ 36 M
201	1	27	~ 70 M
201	10	39	~ 130 M
201	4*	14.5	~ 18 M

Muhammad Usman Ashraf, SQM2015

Particle identification and reconstruction

Au+Au 14.5 GeV, 0-80%, full p_T range

- $K^0_{S} \rightarrow \pi^+ + \pi^-$
- $\Lambda \rightarrow p + \pi$
- $\Xi \rightarrow \Lambda + \pi \rightarrow (p + \pi) + \pi$
- π ,K, p are identified with TPC dE/dx
- reconstruct the secondary vertex

p_T spectra

10^{2} ETTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT (GeV/c)⁻² 5-10% (x10⁻¹ 10-20% (x10⁻²) 20-30% (x10⁻³ ₹_10 30-40% (x10⁴) dp/₁₀ 40-60% (x10⁻⁵) 60-80% (x10⁻⁶) 4 10 1/(N 1/(N 10-10-8 10⁻⁹ 10⁻¹⁰ 10⁻¹ 10-12 STAR Preliminary 10-13 0.5 1 1.5 2 2.5 3.5 4.5 0 3 4 5 P_T (GeV/c) $\overline{\Xi}^{\dagger}$ spectra, Au+Au 14.5 GeV (GeV/c)⁻² ____ 0-5% 5-10% (x10⁻¹) 10 10-20% (x10⁻² ₽_10 20-30% (x10⁻³ 30-40% (x10⁴) 2^{tr}P_T)dN²/dP_T 40-60% (x10⁻⁵ 60-80% (x10⁻⁶ ₹¹⁰⁻⁶ 10 10 10 10-10 10-11 10-12 **STAR Preliminary** 10-1 10⁻¹⁴ 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 5 P_T (GeV/c)

Λ spectra, Au+Au 14.5 GeV

$\overline{\Lambda}$ spectra, Au+Au 14.5 GeV (GeV/c)⁻² 10 5-10% (x10⁻¹ 10-20% (x10⁻² 20-30% (x10⁻³ ₹_10 30-40% (x10⁴) ¹⁰ dp/₂Np(40-60% (x10⁻⁵) 60-80% (x10⁻⁶ L'L' Z, 10 10 10 10⁻¹⁰ 10-1 10-12 10⁻¹³ STAR Preliminary 10-14 0.5 1.5 2 2.5 3 3.5 4 4.5 5 0 1 P_T (GeV/c)

- *|y|<0.5, statistical error only*
- Λ spectra are weak decay feeddown corrected
- Spectra are extrapolated to low

 p_T with fitting functions

Muhammad Usman Ashraf, SQM2015

Particle yields

Particle yields

mid-rapidity, most central collisions (0-5%)

- STAR results are consistent with published results in general.
- Λ yields seems to show dip around 39 GeV. Why? the baryon stopping at mid-rapidity decrease with increasing energy

Anti-baryon to baryon ratio

- Anti-baryon to baryon ratios decrease with the increase of centrality at all energies
- The effect is more prominent at lower energies, anti-baryon absorption?

Anti-baryon to baryon ratio (excitation function)

- STAR BES data stay on a trend with existing data at SPS and RHIC
- Anti-baryon to baryon ratio increase with number of strange quarks at lower energies

 $\overline{\Omega}^+/\Omega^- > \overline{\Xi}^+/\Xi^- > \overline{\Lambda}/\Lambda$

Nuclear modification factors R_{CP}

Statistical error only ΩR_{CP} in 19.6 and 27 GeV : $(0 \sim 10\%)/(40 \sim 60\%)$

- $\sqrt{s_{NN}} \leq 14.5$ GeV,
- $K_{S}^{0} R_{CP}$ larger than unity for $p_{T} > 1.5 \text{ GeV/c}$
- R_{CP} particle type (baryon/meson) difference at intermediate p_T (2~3 GeV/c) becomes less obvious

 $\overline{\Lambda}$ / K⁰_S ratio

 $\sqrt{s_{NN}} \le 14.5 \text{ GeV}$, at $p_T \sim 2 \text{GeV/c}$, the separation of central (0-5%) and peripheral (40-60%) collisions in $\overline{\Lambda} / \text{K}_S^0$ become less obvious

Muhammad Usman Ashraf, SQM2015

Summary

- Measured K_{S}^{0} , Λ , Ξ production in Au+Au collisions at 14.5 GeV, to complete the BES phase-I
- The new 14.5 GeV yields and ratios are in line with other STAR BES data and SPS data
- For $\sqrt{s_{NN}} \leq 14.5 \text{ GeV}$,
 - $K_{S}^{0} R_{CP}$ larger than unity for $p_{T} > 1.5 \text{ GeV/c}$
 - $\overline{\Lambda}/K^0_s$ show much less separation between central and peripheral collisions

→ possible change of collision dynamics between 14.5 and 19.6 GeV