Heavy quarkonium production in Pb-Pb and p-Pb collisions with ALICE at the LHC

Ionut Arsene on behalf of the ALICE Collaboration University of Oslo

Strangeness in Quark Matter SQM2015, 6-11 July 2015, JINR Dubna, Russia

• Colour screening (Matsui and Satz, 1986)

• Sequential suppression (Digal, Petreczcy, Satz 2001)

• Sequential suppression (Digal, Petreczcy, Satz 2001)

• Continuous melting and regeneration of quarkonium states (Thews et al. 2001)

• Sequential suppression (Digal, Petreczcy, Satz 2001)

- Continuous melting and regeneration of quarkonium states (Thews et al. 2001)
- Charmonium creation at the phase boundary (Braun-Munzinger and Stachel 2000)

- Well calibrated probe
 - $c\bar{c}$ and $b\bar{b}$ pairs are produced early in the collision
 - Number of heavy quarks conserved during the system evolution

- Well calibrated probe
 - $c\bar{c}$ and $b\bar{b}$ pairs are produced early in the collision
 - Number of heavy quarks conserved during the system evolution
- Copious production at the LHC
 - ~100 $c\bar{c}$ pairs in central Pb-Pb ($\sigma_{c\bar{c}}(pp @ 7TeV) = 8.5mb$; ALICE JHEP1207(2012) 191)
 - 5-6 $b\bar{b}$ pairs in central Pb-Pb ($\sigma_{b\bar{b}}(pp @ 7TeV) = 0.28mb$; ALICE JHEP 1211 (2012) 06)

- Cold Nuclear Matter (CNM) effects:
 - Nuclear absorption (negligible at the LHC)
 - Formation time
 - Shadowing / gluon saturation effects
 - Coherent parton energy loss

- Cold Nuclear Matter (CNM) effects:
 - Nuclear absorption (negligible at the LHC)
 - Formation time
 - Shadowing / gluon saturation effects
 - Coherent parton energy loss
- Use p-Pb collisions measurements to understand CNM effects and extrapolate to Pb-Pb

The ALICE setup

The ALICE setup

The ALICE setup

- > J/ ψ is strongly suppressed in central collisions at both SPS and RHIC energies, but:
 - > Similar R_{AA} pattern despite very different collision energies

> At RHIC,
$$R_{AA}(y=0) > R_{AA}(1.2 < |y| < 2.2)$$

Inclusive J/ψ at RHIC and LHC

Parralel talk by Arianna Camejo, thursday Parralel talk by Steffen Weber, thursday

Much less suppression compared to lower energy (PHENIX) in central collisions

> Hint of less suppression at mid- than at forward rapidity

Inclusive J/ψ at the LHC

- Models which include (re)combination agree with the data.
- Model uncertainties are dominated by the poor knowledge of the total cc crosssection / CNM effects

Inclusive J/ ψ as a function of p_{\perp}

- > Striking difference between LHC and RHIC at low p_{τ}
- > A strong enhancement at low p_{T} w.r.t. lower energies is described by transport models in terms of J/ ψ regeneration

Elliptic flow

- Strong elliptic flow observed for light particles and D mesons
- > Is J/ψ inheriting any of the fireball collective flow ?

J/ψ elliptic flow

- > The intermediate- p_{τ} J/ ψ hints towards a non-zero v_{2} in semi-central collisions
- Key measurement for the next run and ALICE upgrade

Plenary talk by Andrea Dainese, saturday

Digression: "very" low- p_{-} J/ ψR_{-}

> $J/\psi p_{T}$ spectrum at low p_{T} similar to the one from photo-production in b>2R collisions > $J/\psi R_{AA}$ for $p_{T}<300$ MeV/ $c \sim 7$ for the most peripheral collisions !!!

$\psi(2S)$ production in Pb-Pb collisions at the LHC

- > $\psi(2S)$ is much less bound than J/ ψ
- > Ratio of R_{AA} for different charmonia is less dependent on the charm cross-section
- > Transport and statistical hadronization models can be disentangled !

$\psi(2S)$ production in Pb-Pb collisions at the LHC

arXiv: 1506.08804

- No strong conclusion can be drawn with the present data ۶
- Both SHM and transport models are consistent with the present results ۶
- Key measurement for the ALICE upgrade

$\psi(2S)$ production in Pb-Pb collisions at the LHC

arXiv: 1506.08804

- No strong conclusion can be drawn with the present data
- Both SHM and transport models are consistent with the present results
- Key measurement for the ALICE upgrade

Y(1S) production vs centrality at the LHC

Strong suppression observed for Y(1S) in central collisions

Y(1S) production vs centrality at the LHC

- Strong suppression observed for Y(1S) in central collisions
- Very small contribution from recombination effects expected for bottomonia (Emerick et al.)
- Thermal suppression in a hydrodynamical model with shear viscosity (Strickland et al.) requires the lowest η /s to fit the data

Y(1S) production vs rapidity at the LHC

- Comparisons to early CMS mid-rapidity results suggest a rapidity dependence of the Y(1S) suppression
- The hydrodynamical model underestimates the Y(1S) suppression at forward rapidity

Y(1S) production vs rapidity at the LHC

- Comparisons to early CMS mid-rapidity results suggest a rapidity dependence of the Y(1S) suppression
- The hydrodynamical model underestimates the Y(1S) suppression at forward rapidity
- The newest CMS results hint towards a smoother rapidity dependence

Y(1S) production vs rapidity at the LHC

arXiv: 1407.7734

- Is the direct Y(1S) suppressed?
- LHCb data in pp collisions suggest that feed-down corrections cannot compensate for the whole observed suppression
- Crucial for the sequential melting model

Pb-Pb summary

- Strong support for the (re)combination mechanism of charmonium production at low p_{T} in Pb-Pb collisions:
 - Integrated $J/\psi R_{AA}$ in central collisions much higher w.r.t. RHIC results
 - The effect is concentrated at low p_{T}
 - Indications of non-zero elliptic flow at forward rapidity
- $\psi(2S)$ results are inconclusive with the present data
- Y(1S) suppressed at forward rapidity, in agreement with transport model calculation
 - Is the direct Y(1S) suppressed?

p - Pb @ 5.02 TeV

$E_{_{\rm Pb}}$ =1.58 A TeV, $E_{_{\rm D}}$ =4 TeV

The center-of-mass of the collision is shifted by Δy =0.465 towards the proton fragmention direction

Inclusive J/ψ vs rapidity

Parralel talk by Arianna Camejo, thursday Parralel talk by Steffen Weber, thursday

- J/ψ is suppressed at mid-rapidity and in the forward direction, compatible with energy loss (+shadowing) models
- No suppression observed in the backward direction

Inclusive J/ ψ vs p_{τ}

- J/ψ is suppressed at mid- and forward rapidity, except for the highest-p_T region
- *R*_{pPb} grows with *p*_T, consistent with expectations from shadowing and energy loss calculations
- Early CGC calculations overestimate the suppression at forward rapidity

Inclusive J/ψ vs event activity

- At backward, $Q_{\rm nPh}$ grows with increasing centrality
- At mid- and forward-rapidity the J/ ψ is suppressed, with a significant centrality dependence at forward
- At backward rapidity, the comover and energy loss calculations seem to be disfavoured by the data
- At mid- and forward rapidity, models provide a fair description of the data

Inclusive J/ ψ vs event activity and p_{τ}

• Strongest nuclear effects observed at low p_{τ} and large event activity

No nuclear effects observed for the events with the smallest event activity

$\psi(2S)$ at SPS and RHIC

- > At SPS, no ψ ' suppression w.r.t. CNM expectations in p-A collisions
 - Final state interactions of the formed resonance in the cold nuclear medium
- > Puzzle? ψ' suppressed more than J/ ψ in d-Au at RHIC
 - > No significant differences between J/ ψ and ψ ' expected at RHIC and LHC from shadowing or formation time effects

$\psi(2S)$ vs rapidity at the LHC

arXiv:1405.3796

- \succ Strong ψ' suppression observed in p-Pb at both forward and backward rapidities
- Not expected from either shadowing or energy loss models

$\psi(2S)$ vs p_{τ} at the LHC

arXiv:1405.3796

> Hint that the suppression is larger at low p_{τ}

$\psi(2S)$ vs rapidity

arXiv:1405.3796

> A qualitative description of the data is given in the comover interaction approach

- Indication of a suppression at forward rapidity
- Consistent with no suppression at backward rapidity

Inclusive Y(1S)

Eloss (Arleo et al., JHEP 1303 (2013) 122):

ELoss + EPS09 NLO

 $\overline{\mathbf{0}}$

4 Υ_{cmε}

ELoss

- Fair agreement with various calculations including:
 - > 2->2 production model at LO (Ferreiro et al.)
 - CEM at NLO (Vogt)
 - Coherent parton energy loss (Arleo et al.)

0.6

0.4

0.2

p-Pb summary

- The J/ ψ production at forward rapidity is suppressed towards low $p_{\rm T}$ and high event activity
- Model calculations including shadowing and parton energy loss fairly describe the data
- The large $\psi(2S)$ suppression beyond the one seen for J/ ψ cannot be explained within shadowing and energy loss scenarios.
- Model calculations assuming final-state interactions of the charmonium (pre-)resonance with comovers seem to describe the data.
- Y(1S) measurements indicate a small degree of suppression at forward rapidity and are consistent with no nuclear effects at backward rapidity

Summary & Outlook

- A lot of progress has been made in understanding the nuclear modification of heavy quarkonium production in p-Pb and Pb-Pb collisions
- Charmonia:
 - The results on the J/ ψ R_{AA} at low momentum give a strong support for the recombination mechanism
 - The non-null v_2 is consistent with this interpretation
 - Charmonium measurements become less of a QGP thermometer and more of a tool to study deconfinement
 - Extrapolating the CNM effects from p-Pb to Pb-Pb collisions will improve the quantitative understanding of the hot medium effects and constrain models. Not an easy task!
- Bottomonia:
 - Seems to be a clearer case due to smaller recombination and CNM effects
 - The Y(1S) measurements constrain the sequential suppression models. A careful assessment of the feed-down contributions and CNM effects is needed

Backup

J/ψ at lower energy experiments

> J/ ψ is suppressed in the most central AA collisions beyond CNM effects

Inclusive J/ ψ as a function of rapidity

> Strong rapidity dependence for low- p_{τ} at y>3 (ALICE) partially described in a coherent energy loss model (Arleo et al.)

Elliptic flow

> The intermediate- p_{T} J/ ψ hints toward a non-zero v_{2} in semi-central collisions

Inclusive J/ ψ as a function of p_{τ}

Inclusive J/ ψ as a function of p_{τ}

Charmonia vs event activity

- > $\psi(2S)$ strongly suppressed in events with large activity in the ZDC
 - The trend suggests a final state effect
 - e.g. the pre-resonant state interaction with the comover cloud? Ferreiro et al. arXiv: 1411.0549
- > The J/ ψ suppression is also dependent on event activity.

Non-prompt J/ψ

arXiv: 1504.07151

$J/\psi p_{\tau}$ broadening

- J/ ψp_{τ} broadening observed at forward-y, growing with increasing centrality
- Model calculations in agreement with data