

Universität Bielefeld

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

In-medium heavy quarkonium from lattice QCD spectral functions

Alexander Rothkopf Institute for Theoretical Physics Heidelberg University

in collaboration with: Y.Burnier, O.Kaczmarek, S.Kim and P. Petreczky

References:

Y. Burnier, A.R.: Phys.Rev.Lett. 111 (2013) 182003

A. R., T. Hatsuda, S. Sasaki: Phys.Rev.Lett. 108 (2012) 162001

Y. Burnier, O. Kaczmarek, A. R.: Phys. Rev. Lett. 114 (2015) 082001

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511

XV International Conference on Strangeness in Quark Matter – JINR, Dubna, Russian Federation – July 97 2015

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

From RHIC to LHC: golden age of relativistic heavy-ion collision experiments

From RHIC to LHC: golden age of relativistic heavy-ion collision experiments

Our interest: probes susceptible to medium but distinguishable Q_{probe}>> T_{med}

- From RHIC to LHC: golden age of relativistic heavy-ion collision experiments
- Our interest: probes susceptible to medium but distinguishable Q_{probe}>> T_{med}

- From RHIC to LHC: golden age of relativistic heavy-ion collision experiments
- Our interest: probes susceptible to medium but distinguishable Q_{probe}>> T_{med}

Theory goal: 1st principles insight into in-medium QQ in heavy-ion collisions

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

 S.Kim, P. Petreczky, A.R.:
 Phys.Rev. D91 (2015) 054511

 compare also G.Aarts et. al.:
 JHEP 1407 (2014) 097

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511 compare also G.Aarts et. al. : JHEP 1407 (2014) 097

XV Strangeness in Quark Matter – JINR, Dubna, Russian Federation – July 9th 2015

Quarkonium as Open-Quantum System see e.g.Y.Akamatsu, A.R. PRD85 (2012) 105011

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511 compare also G.Aarts et. al. : JHEP 1407 (2014) 097

XV Strangeness in Quark Matter – JINR, Dubna, Russian Federation – July 9th 2015

Quarkonium as Open-Quantum System see e.g.Y.Akamatsu, A.R. PRD85 (2012) 105011

Two limits for in-medium $Q\bar{Q}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

T. Matsui and H. Satz: Phys.Lett. B178 (1986) 416

Static: Kinetically equilibrated heavy quarks

presence of in-medium bound eigenstates?

modern approach: LATTICE QCD meson spectra

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511 compare also G.Aarts et. al. : JHEP 1407 (2014) 097 Quarkonium as Open-Quantum System see e.g.Y.Akamatsu, A.R. PRD85 (2012) 105011

Dynamical: real-time approach to equilibrium

redistribution of states over time?

LATTICE QCD based potential description

Y. Burnier, O. Kaczmarek, A. R.: Phys. Rev. Lett. 114, 082001 (2015) A. R., T. Hatsuda, S. Sasaki: Phys.Rev.Lett. 108 162001 (2012)

A robust tool: Lattice QCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Successful at T≈0: Quarkonium spectra

No modeling: starting point is discretized QCD action

A robust tool: Lattice QCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Successful at T≈0: Quarkonium spectra

- No modeling: starting point is discretized QCD action
- Experimental input required for setting the scale

A robust tool: Lattice QCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Successful at T≈0: Quarkonium spectra

- No modeling: starting point is discretized QCD action
- Experimental input required for setting the scale
- Bridge between microscopic QFT and experiment

Lattice QCD in 2011: m_{nb2S} = 9988±3 MeV Dowdall et. al., PRD85, 054509 (2012), see also S. Meinel, PRD 82, 114502 (2010)

Belle in 2012: $m_{phas} = 9$

BELLE, PRL 109, 232002 (2012)

A robust tool: Lattice QCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Successful at T≈0: Quarkonium spectra

- No modeling: starting point is discretized QCD action
- Experimental input required for setting the scale
- Bridge between microscopic QFT and experiment

Lattice QCD in 2011: m_{nb2S} = 9988±3 MeV Dowdall et. al., PRD85, 054509 (2012), see also S. Meinel, PRD 82, 114502 (2010)

Belle in 2012: $m_{\eta b2S} = 9999 \pm 3.5^{+2.8}_{-1.9}$ MeV

Successful at T>0: QCD medium properties

(Pseudo)critical temperature: 154±9 MeV

WB JHEP 1009 (2010) 073 - HotQCD PRD85 (2012) 054503

• Trace anomaly $\Theta^{\mu\mu} = \varepsilon - 3p$: strong coupling at T_c

HotQCD PRD90 (2014) 094503 - WB PLB730 (2014) 99-104, see also tmfT PRD91 (2015) 7,074504

In-medium QQ part I

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

LATTICE QCD Bottomonium spectra

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511

In-medium QQ part I

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

LATTICE QCD Bottomonium spectra

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511

PRACTICAL CHALLENGE: High cost if light and heavy d.o.f share the same spacetime grid

for a direct approach see e.g. H.T. Ding et. al. Phys.Rev. D86 (2012) 014509

$$a \ll \frac{1}{2m_b} \approx 0.02 \text{fm}$$
 $\frac{1}{T} = N_{\tau}a \sim 1 \text{fm}$

In-medium $Q\bar{Q}$ part I

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

LATTICE QCD Bottomonium spectra

S.Kim, P. Petreczky, A.R.: Phys.Rev. D91 (2015) 054511

PRACTICAL CHALLENGE: High cost if light and heavy d.o.f share the same spacetime grid

for a direct approach see e.g. H.T. Ding et. al. Phys.Rev. D86 (2012) 014509

$$a \ll \frac{1}{2m_b} \approx 0.02 \text{fm} \quad \frac{1}{T} = N_\tau a \sim 1 \text{fm}$$

Turn separation of scales into an advantage: effective field theory NRQCD

Thacker, Lepage Phys.Rev. D43 (1991) 196-208

Heavy Quarks on the Lattice

- Effective field theory from scale separation:
- Relativistic thermal field theory

 $\frac{\Lambda_{\text{QCD}}}{m_{\text{Q}}} \ll 1, \quad \frac{T}{m_{\text{Q}}} \ll 1, \quad \frac{p}{m_{\text{Q}}} \ll 1$

Heavy Quarks on the Lattice

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Effective field theory from scale separation:
 - Relativistic thermal
field theoryQCD
Dirac fields $\vec{Q}(x), Q(x)$

Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423

 $\frac{\Lambda_{\text{QCD}}}{m_{\text{Q}}} \ll 1, \quad \frac{T}{m_{\text{Q}}} \ll 1, \quad \frac{p}{m_{\text{Q}}} \ll 1$

Heavy Quarks on the Lattice

UNIVERSITÄT HEIDELBERG ZUKUNF **SEIT 1386**

Effective field theory from scale separation:

Heavy Quarks on the Lattice

Heavy Quarks on the Lattice

UNIVERSITAT HEIDELBERG ZUKUNF[.] **SEIT 1386**

• Effective field theory from scale separation: $\frac{\Lambda_{\text{QCD}}}{M} \ll 1$, $\frac{T}{M} \ll 1$, $\frac{P}{M} \ll 1$ Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423 Relativ fie

			m _Q	m _Q	mq
vistic thermal	QCD	NRQCD		_	
	Dirac fields	Pauli fields		L _{NRQCD} =	=
	$\bar{Q}(x), Q(x)$	$\chi^{\dagger}(\mathbf{x}), \chi(\mathbf{x})$ $\xi^{\dagger}(\mathbf{x}), \xi(\mathbf{x})$	$\chi^{\dagger} (iD_t +$	$-\frac{D_i^2}{2M_Q}+\dots$	$(\chi + \xi^{\dagger}(\dots)\xi)$
•••	$\bar{\mathbf{q}}(\mathbf{x}), \mathbf{q}(\mathbf{x})$	$(x), A^{\mu}(x)$, —	$\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\bar{q}$	$(\dots)q$

Individual Q or anti-Q in a medium background: Initial value problem $G(\tau) = \langle \chi(\tau) \chi^{\dagger}(0) \rangle$

$$G(\mathbf{x}, \tau + a) = U_4^{\dagger}(\mathbf{x}, \tau) \left(1 - \frac{\mathbf{p}_{lat}^2}{4M_Q a} + \dots\right) G(\mathbf{x}, \tau) \qquad \text{well behaved if } \mathbf{M}_Q a > 1.5$$
Davies, Thacker Phys. Rev. D45 (1992)

Heavy Quarks on the Lattice

HEIDELBERG ZUKUNF SEIT 1386

Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423

Individual Q or anti-Q in a medium background: Initial value problem $G(\tau) = \langle \chi(\tau) \chi^{\dagger}(0) \rangle$

$$G(\mathbf{x}, \tau + a) = U_4^{\dagger}(\mathbf{x}, \tau) \left(1 - \frac{\mathbf{p}_{lat}^2}{4M_Q a} + \dots\right) G(\mathbf{x}, \tau) \qquad \text{well behaved if } \mathbf{M}_Q a \ge 1.5$$

$$G(\mathbf{x}, \tau + a) = U_4^{\dagger}(\mathbf{x}, \tau) \left(1 - \frac{\mathbf{p}_{lat}^2}{4M_Q a} + \dots\right) G(\mathbf{x}, \tau) \qquad \text{well behaved if } \mathbf{M}_Q a \ge 1.5$$

$$G(\mathbf{x}, \tau + a) = U_4^{\dagger}(\mathbf{x}, \tau) \left(1 - \frac{\mathbf{p}_{lat}^2}{4M_Q a} + \dots\right) G(\mathbf{x}, \tau) \qquad \text{well behaved if } \mathbf{M}_Q a \ge 1.5$$

• ${}^{3}S_{1}$ (Y) and ${}^{3}P_{1}$ (χ_{h1}) channel correlators D(τ) from heavy quark propagators G(τ)

$$D(\tau) = \sum_{\mathbf{x}} \langle O(\mathbf{x}, \tau) G_{\mathbf{x}\tau} O^{\dagger}(\mathbf{x}_{0}, \tau_{0}) G_{\mathbf{x}\tau}^{\dagger} \rangle_{med} \qquad O(^{3}S_{1}; \mathbf{x}, \tau) = \sigma_{i}, \quad O(^{3}P_{1}; \mathbf{x}, \tau) = \stackrel{\leftrightarrow}{\Delta_{i}} \sigma_{j} - \stackrel{\leftrightarrow}{\Delta_{j}} \sigma_{i}$$
Thacker, Lepage Phys.Rev. D43 (1991)

Light d.o.f. (gluons, u d s quarks) represented by realistic HotQCD lattices

A. Bazavov et. al., Phys. Rev. D 85 (2012) 054503

HotQCD HISQ/tree action $48^3 \times N_{\tau}$ $m_{u,d}/m_s = 0.05$ $T_C = 154(9)MeV$							
β	6.664	6.700	6.740	6.770	6.800	6.840	6.880
a[fm]	0.1169	0.1130	0.1087	0.1057	0.1027	0.09893	0.09528
Mba	2.759	2.667	2.566	2.495	2.424	2.335	2.249
$T/T_C(N_{\tau}=12)$	0.911	0.944	0.980	1.008	1.038	1.078	1.119
β	6.910	6.950	6.990	7.030	7.100	7.150	7.280
a[fm]	0.09264	0.08925	0.086	0.08288	0.07772	0.07426	0.06603
Mba	2.187	2.107	2.030	1.956	1.835	1.753	1.559
$T/T_{C}(N_{\tau} = 12)$	1.151	1.194	1.240	1.286	1.371	1.436	1.614

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Light d.o.f. (gluons, u d s quarks) represented by realistic HotQCD lattices

A. Bazavov et. al., Phys. Rev. D 85 (2012) 054503

HotQCD HISQ/tree action $48^3 \times N_{\tau}$ $m_{u,d}/m_s = 0.05$ $T_C = 154(9)MeV$							
β	6.664	6.700	6.740	6.770	6.800	6.840	6.880
a[fm]	0.1169	0.1130	0.1087	0.1057	0.1027	0.09893	0.09528
Mba	2.759	2.667	2.566	2.495	2.424	2.335	2.249
$T/T_C(N_{\tau}=12)$	0.911	0.944	0.980	1.008	1.038	1.078	1.119
β	6.910	6.950	6.990	7.030	7.100	7.150	7.280
a[fm]	0.09264	0.08925	0.086	0.08288	0.07772	0.07426	0.06603
Mba	2.187	2.107	2.030	1.956	1.835	1.753	1.559
$T/T_{C}(N_{\tau} = 12)$	1.151	1.194	1.240	1.286	1.371	1.436	1.614

• 48³x12 with relatively light pions

 $M_{\pi} \sim 161 MeV$ and a $T_c = 159 \pm 3 MeV$

Light d.o.f. (gluons, u d s quarks) represented by realistic HotQCD lattices

A. Bazavov et. al., Phys. Rev. D 85 (2012) 054503

HotQCD HISQ/tree action $48^3 \times N_{\tau}$ $m_{u,d}/m_s = 0.05$ $T_C = 154(9)MeV$							
β	6.664	6.700	6.740	6.770	6.800	6.840	6.880
a[fm]	0.1169	0.1130	0.1087	0.1057	0.1027	0.09893	0.09528
Mba	2.759	2.667	2.566	2.495	2.424	2.335	2.249
$T/T_C(N_{\tau}=12)$	0.911	0.944	0.980	1.008	1.038	1.078	1.119
β	6.910	6.950	6.990	7.030	7.100	7.150	7.280
a[fm]	0.09264	0.08925	0.086	0.08288	0.07772	0.07426	0.06603
Mba	2.187	2.107	2.030	1.956	1.835	1.753	1.559
$T/T_{C}(N_{\tau} = 12)$	1.151	1.194	1.240	1.286	1.371	1.436	1.614

- 48³x12 with relatively light pions
- Important for the use with lattice NRQCD:

 $M_{\pi} \sim 161 MeV$ and a $T_c = 159 \pm 3 MeV$

2.759 > M_ba > 1.559

Light d.o.f. (gluons, u d s quarks) represented by realistic HotQCD lattices

A. Bazavov et. al., Phys. Rev. D 85 (2012) 054503

HotQCD HISQ/tree action $48^3 \times N_{\tau}$ $m_{u,d}/m_s = 0.05$ $T_C = 154(9)MeV$							
β	6.664	6.700	6.740	6.770	6.800	6.840	6.880
a[fm]	0.1169	0.1130	0.1087	0.1057	0.1027	0.09893	0.09528
Mba	2.759	2.667	2.566	2.495	2.424	2.335	2.249
$T/T_C(N_{\tau}=12)$	0.911	0.944	0.980	1.008	1.038	1.078	1.119
β	6.910	6.950	6.990	7.030	7.100	7.150	7.280
a[fm]	0.09264	0.08925	0.086	0.08288	0.07772	0.07426	0.06603
Mba	2.187	2.107	2.030	1.956	1.835	1.753	1.559
$T/T_{C}(N_{\tau} = 12)$	1.151	1.194	1.240	1.286	1.371	1.436	1.614

• 48³x12 with relatively light pions

Important for the use with lattice NRQCD:

 $M_{\pi} \sim 161 MeV$ and a $T_c = 159 \pm 3 MeV$

2.759 > M_ba > 1.559

Temperature changed by variation of the lattice spacing 140MeV < T < 249MeV For a study based on the fixed scale approach see: FASTSUM G. Aarts et. al. JHEP 1407 (2014) 097, JHEP 1111 (2011) 103

Light d.o.f. (gluons, u d s quarks) represented by realistic HotQCD lattices

A. Bazavov et. al., Phys. Rev. D 85 (2012) 054503

HotQCD HISQ/tree action $48^3 \times N_{\tau}$ $m_{u,d}/m_s = 0.05$ $T_C = 154(9)MeV$							
β	6.664	6.700	6.740	6.770	6.800	6.840	6.880
a[fm]	0.1169	0.1130	0.1087	0.1057	0.1027	0.09893	0.09528
Mba	2.759	2.667	2.566	2.495	2.424	2.335	2.249
$T/T_C(N_{\tau}=12)$	0.911	0.944	0.980	1.008	1.038	1.078	1.119
β	6.910	6.950	6.990	7.030	7.100	7.150	7.280
a[fm]	0.09264	0.08925	0.086	0.08288	0.07772	0.07426	0.06603
Mba	2.187	2.107	2.030	1.956	1.835	1.753	1.559
$T/T_{C}(N_{\tau} = 12)$	1.151	1.194	1.240	1.286	1.371	1.436	1.614

• 48³x12 with relatively light pions

Important for the use with lattice NRQCD:

 $M_{\pi} \sim 161 MeV$ and a $T_c = 159 \pm 3 MeV$

2.759 > M_ba > 1.559

- Temperature changed by variation of the lattice spacing 140MeV < T < 249MeV For a study based on the fixed scale approach see: FASTSUM G. Aarts et. al. JHEP 1407 (2014) 097, JHEP 1111 (2011) 103
- For calibration T \approx 0 configurations available at b=6.664, 6.8, 6.95, 7.28 (48³x32,64)

Inversion of Laplace transform required to obtain spectra from correlators

$$\mathsf{D}(\tau) = \int_{-2\mathcal{M}_Q}^{\infty} \mathrm{d}\omega e^{-\tau\omega} \rho(\omega)$$

Inversion of Laplace transform required to obtain spectra from correlators

$$D_{i} = \sum_{l=1}^{N_{\omega}} exp[-\omega_{l}\tau_{i}] \rho_{l} \Delta \omega_{l}$$

I. N_{ω} parameters $\rho_{I} >> N_{\tau}$ datapoints 2. data D_{i} has finite precision

Inversion of Laplace transform required to obtain spectra from correlators

$$D_{i} = \sum_{l=1}^{N_{\omega}} exp[-\omega_{l}\tau_{i}] \rho_{l} \Delta \omega_{l}$$

I. N_{ω} parameters $\rho_I >> N_{\tau}$ datapoints

2. data D_i has finite precision

Give meaning to problem by incorporating prior knowledge: Bayesian approach M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

Bayes theorem: Regularize the naïve χ^2 functional P[D|ho] through a prior P[ho|I] $P[
ho|D,I] \propto P[D|
ho] P[
ho|I]$

Inversion of Laplace transform required to obtain spectra from correlators

$$D_{i} = \sum_{l=1}^{N_{\omega}} exp[-\omega_{l}\tau_{i}] \rho_{l} \Delta \omega_{l}$$

I. N_ω parameters $ρ_1 >> N_{\tau}$ datapoints

2. data D_i has finite precision

Give meaning to problem by incorporating prior knowledge: Bayesian approach M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

Bayes theorem: Regularize the naïve χ^2 functional P[D|ho] through a prior P[ho|I] $P[
ho|D,I] \propto P[D|
ho] P[
ho|I]$

• New prior enforces: ρ positive definite, smoothness of ρ , result independent of units

$$P[\rho|I] \propto e^{S} \qquad S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_l \Big(1 - \frac{\rho_l}{m_l} + \log \Big[\frac{\rho_l}{m_l} \Big] \Big) \qquad \text{pres}$$

Y.Burnier, A.R. RL III (2013) 18, 182003

Inversion of Laplace transform required to obtain spectra from correlators

$$D_{i} = \sum_{l=1}^{N_{\omega}} exp[-\omega_{l}\tau_{i}] \rho_{l} \Delta \omega_{l}$$

I. N_ω parameters $ρ_1 >> N_{\tau}$ datapoints

2. data D_i has finite precision

Give meaning to problem by incorporating prior knowledge: Bayesian approach M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

Bayes theorem: Regularize the naïve χ^2 functional P[D|ho] through a prior P[ho|I] $P[
ho|D,I] \propto P[D|
ho] P[
ho|I]$

• New prior enforces: ρ positive definite, smoothness of ρ , result independent of units

$$P[\rho|I] \propto e^{S} \qquad S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_l \left(1 - \frac{\rho_l}{m_l} + \log \left[\frac{\rho_l}{m_l} \right] \right) \qquad \xrightarrow{\text{Y.Burnier, A.R.}} \text{PRL III (2013) 18, 182003}$$

Different from Maximum Entropy Method: S not entropy, no more flat directions

Inversion of Laplace transform required to obtain spectra from correlators

$$D_{i} = \sum_{l=1}^{N_{\omega}} exp[-\omega_{l}\tau_{i}] \rho_{l} \Delta \omega_{l}$$

I. N_ω parameters $ρ_1 >> N_{\tau}$ datapoints

2. data D_i has finite precision

Give meaning to problem by incorporating prior knowledge: Bayesian approach M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

- Bayes theorem: Regularize the naïve χ^2 functional P[D|ho] through a prior P[ho|I] $P[
 ho|D,I] \propto P[D|
 ho] P[
 ho|I]$
- New prior enforces: ρ positive definite, smoothness of ρ , result independent of units

$$P[\rho|I] \propto e^{S} \qquad S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_l \left(1 - \frac{\rho_l}{m_l} + \log \left[\frac{\rho_l}{m_l} \right] \right) \qquad \begin{array}{c} \text{Y.Burnier, A.R.} \\ \text{PRL III (2013) 18, 182003} \end{array}$$

Different from Maximum Entropy Method: S not entropy, no more flat directions

 $\left. \frac{\delta}{\delta \rho} \mathsf{P}[\rho | \mathsf{D}, \mathsf{I}] \right|_{\rho = \rho^{\mathsf{B} \mathsf{R}}} = \mathsf{0}$

- No apriori restriction on the search space
- In the following: constant default model m_l=const

T≈0 Bayesian Bottomonium Spectra

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

T≈0 Bayesian Bottomonium Spectra

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

S-wave ground state peak well resolved, next peak mostly from Y(2S)

T≈0 Bayesian Bottomonium Spectra

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

S-wave ground state peak well resolved, next peak mostly from Y(2S)

PDG Upsilon mass for calibration of absolute energy scale:

$$M_{\chi_{b1}}^{NRQCD} = 9.917(3) \text{GeV} > M_{\chi_{b1}(1P)}^{exp} = 9.89278(26)(31) \text{GeV}$$

T≈0 Bayesian Bottomonium Spectra

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

S-wave ground state peak well resolved, next peak mostly from Y(2S)

PDG Upsilon mass for calibration of absolute energy scale:

$$M_{\chi_{b1}}^{NRQCD} = 9.917(3) \text{GeV} > M_{\chi_{b1}(1P)}^{exp} = 9.89278(26)(31) \text{GeV}$$

P-wave ground state broader: worse s/n ratio and smaller physical peak size

Reconstruction Accuracy: S-wave

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

High precision of the improved Bayesian reconstruction (narrow width resolved)

- Bow does accuracy suffer from limited available information at T>0 (Nτ=12)?
- One of the tests we ran: truncate T=0 dataset ($N\tau$ =32/64) to $N\tau$ =12

Reconstruction Accuracy: S-wave

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

High precision of the improved Bayesian reconstruction (narrow width resolved)

- Bow does accuracy suffer from limited available information at T>0 (N τ =12)?
- One of the tests we ran: truncate T=0 dataset ($N\tau$ =32/64) to $N\tau$ =12

Spectral Functions At T>0

1000

Worse signal to noise ratio leads to larger Jackknife errors in P-wave

- Worse signal to noise ratio leads to larger Jackknife errors in P-wave
- Naïve inspection by eye: S-wave ground state peak present up to 249MeV

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Our strategy: systematic comparison to **non-interacting spectra**

Our strategy: systematic comparison to **non-interacting spectra**

Analytically known, no peaked features

$$a_{\tau} E_{p} = -\log\left(1 - \frac{\mathbf{p}_{lat}^{2}}{8M_{b}a_{s}}\right)$$
$$\rho_{s}(\omega) = \frac{4\pi N_{c}}{N_{s}^{2}} \sum_{p} \delta(\omega - 2E_{p})$$

G.Aarts et. al., JHEP | | | | (2011) 103

Our strategy: systematic comparison to non-interacting spectra

Analytically known, no peaked features

Numerically: Reconstruct from free NRQCD (U_{μ} =1)

Expectation: Presence of wiggly features due to numerical Gibbs ringing

$$a_{\tau} E_{\mathbf{p}} = -\log\left(1 - \frac{\mathbf{p}_{lat}^2}{8M_b a_s}\right)$$
$$\rho_{S}(\omega) = \frac{4\pi N_c}{N_s^2} \sum_{\mathbf{p}} \delta(\omega - 2E_{\mathbf{p}})$$

G.Aarts et. al., JHEP | | | | (2011) 103

Our strategy: systematic comparison to non-interacting spectra

Analytically known, no peaked features

Numerically: Reconstruct from free NRQCD (U_{μ} =1)

G.Aarts et. al., JHEP | | | | (2011) 103

Expectation: Presence of wiggly features due to numerical Gibbs ringing

• At T=249 MeV: Ground state peak stronger than numerical ringing by factor 3

In-medium $Q\bar{Q}$ part II

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

QQbar as Open-Quantum System

LATTICE QCD based potential description

Y. Burnier, O. Kaczmarek, A. R.: Phys. Rev. Lett. 114, 082001 (2015) A. R., T. Hatsuda, S. Sasaki: Phys. Rev. Lett. 108, 162001 (2012)

CONCEPTUAL CHALLENGE: How to define the potential at finite temperature?

Effective field theory

Effective field theory

Brambilla, Ghiglieri, Vairo and Petreczky PRD 78 (2008) 014017

Relativistic thermal	QCD	NRQCD	pNRQCD	Quantum
neid theory	Dirac fields	Pauli fields	Singlet/Octet	mechanics
	$\bar{Q}(\mathbf{x}), Q(\mathbf{x})$	$\chi^{\dagger}(x), \chi(x)$	$\psi_{S}(R,t),\psi_{O}(R,t)$	
	$\bar{q}(x), q(x)$	$(x), A^{\mu}(x)$	$\mathfrak{i}\mathfrak{d}_t\psi_S=\Big(V^{\rm QCD}(R)+\mathcal{O}(\mathfrak{m}$	${Q \choose Q} \psi_S$

Effective field theory

Brambilla, Ghiglieri, Vairo and Petreczky PRD 78 (2008) 014017

Matching between QCD and pNRQCD in the static limit

$$\langle \psi_{S}(\mathbf{R},t)\psi_{S}^{*}(\mathbf{R},0)\rangle_{\mathrm{pNRQCD}} \equiv W_{\Box}(\mathbf{R},t) = \mathrm{Tr}\Big(\exp\Big[-i\int_{\Box}dx^{\mu}A_{\mu}(x)\Big]\Big)$$

Effective field theory

Brambilla, Ghiglieri, Vairo and Petreczky PRD 78 (2008) 014017

Matching between QCD and pNRQCD in the static limit

$$\langle \psi_{S}(\mathbf{R},t)\psi_{S}^{*}(\mathbf{R},0)\rangle_{pNRQCD} \equiv W_{\Box}(\mathbf{R},t) = \mathrm{Tr}\left(\exp\left[-i\int_{\Box}dx^{\mu}A_{\mu}(x)\right]\right)$$
$$i\partial_{t}W_{\Box}(\mathbf{R},t) \stackrel{t>>t_{\mathrm{med}}}{=} V^{\mathrm{QCD}}(\mathbf{R})W_{\Box}(\mathbf{R},t)$$

Effective field theory

Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423 Brambilla, Ghiglieri, Vairo and Petreczky PRD 78 (2008) 014017

R

X,Y,Z

Q

- Relativistic thermal
field theoryQCDNRQCDQuantum
mechanics \vec{V} \vec{V} <
- Matching between QCD and pNRQCD in the static limit
 - $\langle \psi_{S}(\mathbf{R},t)\psi_{S}^{*}(\mathbf{R},0)\rangle_{\mathrm{pNRQCD}} \equiv W_{\Box}(\mathbf{R},t) = \mathrm{Tr}\Big(\exp\Big[-i\int_{\Box}dx^{\mu}A_{\mu}(x)\Big]\Big)$

$$i\partial_t W_{\Box}(\mathbf{R},t) \stackrel{t>>t_{\mathrm{med}}}{=} V^{\mathrm{QCD}}(\mathbf{R}) W_{\Box}(\mathbf{R},t)$$

$$V^{QCD}(\mathbf{R}) = \lim_{t \to \infty} \frac{i\partial_t W_{\Box}(\mathbf{R}, t)}{W_{\Box}(\mathbf{R}, t)}$$

Effective field theory

Brambilla, Ghiglieri, Vairo and Petreczky PRD 78 (2008) 014017

- Relativistic thermal
field theoryQCDNRQCDQuantum
mechanics \vec{V} \vec{V} <
- Matching between QCD and pNRQCD in the static limit
 - $\langle \psi_{S}(\mathbf{R},t)\psi_{S}^{*}(\mathbf{R},0)\rangle_{\mathrm{pNRQCD}} \equiv W_{\Box}(\mathbf{R},t) = \mathrm{Tr}\Big(\exp\Big[-i\int_{\Box}dx^{\mu}A_{\mu}(x)\Big]\Big)$

$$i\partial_t W_{\Box}(\mathbf{R},t) \stackrel{t>>t_{\mathrm{med}}}{=} V^{\mathrm{QCD}}(\mathbf{R}) W_{\Box}(\mathbf{R},t)$$

$$V^{QCD}(\mathbf{R}) = \lim_{t \to \infty} \frac{i \partial_t W_{\Box}(\mathbf{R}, t)}{W_{\Box}(\mathbf{R}, t)} \in \mathbb{C}$$

XV Strangeness in Quark Matter – JINR, Dubna, Russian Federation – July 9th 2015

Im[V] first observed in Laine et al. JHEP03 (2007) 054; For a discussion of Im[V] see e.g. A.R. JHEP 1404 (2014) 085

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

On the lattice real-time observables not directly accessible!

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

$$W_{\Box}(\mathbf{R},t) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R},\omega)$$

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

$$W_{\Box}(\mathbf{R},t) = \int_{-\infty}^{\infty} d\omega \ e^{-i\omega t} \ \rho_{\Box}(\mathbf{R},\omega) \quad \longleftrightarrow \quad W_{\Box}(\mathbf{R},\tau) = \int_{-\infty}^{\infty} d\omega \ e^{-\omega \tau} \ \rho_{\Box}(\mathbf{R},\omega)$$

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

$$W_{\Box}(\mathbf{R}, \mathbf{t}) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \quad \longleftrightarrow \quad W_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \, \rho_{\Box}(\mathbf{R}, \omega)$$

$$V^{QCD}(\mathbf{R}) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega)}{\int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega)} \quad \longleftrightarrow \quad \begin{array}{c} \mathbf{Bayesian \ spectral \ reconstruction}} \\ \mathbf{Bayesian \ spectral \ reconstruction} \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega) \\ \mathbf{W}_{\Box}(\mathbf{R}, \tau) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R}, \omega)$$

• Relation between spectrum and potential from the symetries of $W_{\Box}(R,t)$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

• Relation between spectrum and potential from the symetries of $W_{\Box}(R,t)$

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

E Relation between spectrum and potential from the symetries of $W_{\Box}(R,t)$

$$(\widehat{\mathbf{x}})^{\mathcal{A}} (\widehat{\mathbf{x}})^{\mathcal{A}} (\widehat{\mathbf$$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- On the lattice real-time observables not directly accessible!
- How to connect to the Euclidean domain: spectral functions

• Relation between spectrum and potential from the symetries of $W_{\Box}(R,t)$

$$p_{\Box}(\mathbf{R},\omega) = \frac{1}{\pi} e^{\gamma_1(\mathbf{R})} \frac{\Gamma_0(\mathbf{R}) \cos[\gamma_2(\mathbf{R})] - (\omega_0(\mathbf{R}) - \omega) \sin[\gamma_2(\mathbf{R})]}{\Gamma_0^2(\mathbf{R}) + (\omega_0(\mathbf{R}) - \omega)^2} + \kappa_0(\mathbf{R}) + \kappa_1(\mathbf{R})(\omega_0(\mathbf{R}) - \omega) + \dots$$

$$V^{\rm QCD}(R) = \omega_0(R) + i\Gamma_0(R)$$

technical details: Y.Burnier, A.R. Phys.Rev. D86 (2012) 051503

Summary: V^{QCD} from the lattice

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

From lattice QCD correlators to the complex heavy quark potential

Technical detail: Wilson Line correlators in Coulomb gauge instead of Wilson loops
 Practical reason: Absence of cusp divergences, hence less suppression along τ

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Fixed scale approach: $\beta=7.0$ $\xi=a_s/a_t=4$ $a_s=0.039$ fm $N_t=192-24$

Fixed scale approach: $\beta=7.0$ $\xi=a_s/a_t=4$ $a_s=0.039$ fm N_t=192-24

Re[V^{QCD}]: smooth transition from confining to Debye screened behavior

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Fixed scale approach: β =7.0 ξ =a_s/a_t=4 a_s=0.039 fm N_t=192-24

Re[V^{QCD}]: smooth transition from confining to Debye screened behavior

First principles check: Color singlet free energies lie close to Re[VQCD]

$$\mathsf{F}^{(1)}(\mathsf{R}) = -\frac{1}{\beta} \log \big[W_{||}(\mathsf{R}, \tau = \beta) \big]_{\mathrm{CG}}$$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Fixed scale approach: $\beta=7.0$ $\xi=a_s/a_t=4$ $a_s=0.039$ fm $N_t=192-24$

Re[V^{QCD}]: smooth transition from confining to Debye screened behavior

First principles check: Color singlet free energies lie close to Re[VQCD]

$$\mathsf{F}^{(1)}(\mathsf{R}) = -\frac{1}{\beta} \log \left[W_{||}(\mathsf{R}, \tau = \beta) \right]_{\mathrm{CG}}$$

Im[V^{QCD}] for small R: same order of magnitude as in HTL perturbation theory

Re[V^{QCD}] in full lattice QCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Potential in the confining regime reliably extracted up to r=lfm (string breaking?)

Qualitatively similar to quenched case (confinement to Debye screening)

Conclusions

- QCD Spectral functions provide multiple windows to in-medium QQ physics
- New Bayesian spectral reconstruction improves their lattice QCD determination
- Bottomonium in a realistic thermal medium (HISQ HotQCD)
 - N_{τ} =12 lattices give upper limits on in-medium modification
 - A systematic comparison between free and interacting spectra suggests:
 S-wave and P-wave ground state survive up to at least T=249MeV
- Effective field theory based potential for static quarks from T>0 QCD
 - No more need for modeling: QCD derived complex potential available
 - New Bayesian method makes quantitative evaluation on the lattice possible: Re[V] smooth transition: confining to Debye screening, Im[V] of same order than HTL

Conclusions

- QCD Spectral functions provide multiple windows to in-medium QQ physics
- New Bayesian spectral reconstruction improves their lattice QCD determination
- Bottomonium in a realistic thermal medium (HISQ HotQCD)
 - N_{τ} =12 lattices give upper limits on in-medium modification
 - A systematic comparison between free and interacting spectra suggests:
 S-wave and P-wave ground state survive up to at least T=249MeV
- Effective field theory based potential for static quarks from T>0 QCD
 - No more need for modeling: QCD derived complex potential available
 - New Bayesian method makes quantitative evaluation on the lattice possible:
 Re[V] smooth transition: confining to Debye screening, Im[V] of same order than HTL

Благодарю вас за внимание - Thank you for your attention