Towards the quark–gluonic Equation of State including strange and charmed quarks with realistic masses

Florian Burger¹, Ernst–Michael Ilgenfritz², Maria Paola Lombardo³, Michael Müller–Preussker¹, Anton Trunin²

¹Humboldt University Berlin ²Bogoliubov Laboratory of Theoretical Physics, JINR ³Frascati National Laboratory, INFN

All simulations at (almost) vanishing chemical potential (sign problem)

 $N_f = 0$ (quenched approximation, no dynamical quarks):

- G. Boyd et al., Nucl.Phys. B 469, 419 (1996)
- M. Okamoto et al. [CP-PACS], Phys. Rev. D 60, 094510 (1999)
- S. Borsanyi et al. [Wuppertal-Budapest], JHEP 1207, 056 (2012)

 $N_f = 2$ (up/down quarks with equal masses):

- C.W. Bernard et al. [MILC], Phys. Rev. D 55, 6861 (1997)
- A. Ali Khan et al [CP-PACS], Phys. Rev. D 64, 074510 (2001)

 $N_f = 2 + 1$ (strange quark included, unphysical light masses):

- T. Umeda et al. [WHOT-QCD], Phys. Rev. D 85, 094508 (2012)
- S. Borsanyi et al. [Wuppertal-Budapest], JHEP 1208, 126 (2012)

All simulations at (almost) vanishing chemical potential (sign problem)

 $N_f = 0$ (quenched approximation, no dynamical quarks):

- G. Boyd et al., Nucl.Phys. B 469, 419 (1996)
- M. Okamoto et al. [CP-PACS], Phys. Rev. D 60, 094510 (1999)
- S. Borsanyi et al. [Wuppertal-Budapest], JHEP 1207, 056 (2012)

 $N_f = 2$ (up/down quarks with equal masses):

- C.W. Bernard et al. [MILC], Phys. Rev. D 55, 6861 (1997)
- A. Ali Khan et al [CP-PACS], Phys. Rev. D 64, 074510 (2001)

 $N_f = 2 + 1$ (strange quark included, unphysical light masses):

- T. Umeda et al. [WHOT-QCD], Phys. Rev. D 85, 094508 (2012)
- S. Borsanyi et al. [Wuppertal-Budapest], JHEP 1208, 126 (2012)

 $N_f = 2 + 1$ (realistic masses in staggered approximation):

- S. Borsanyi et al. [Wuppertal-Budapest], Phys. Lett. B 730, 99 (2014)
- A. Bazavov et al. [HotQCD], Phys. Rev. D 90, 094503 (2014)

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 2/17

At the moment simulations with strange and light quark at (almost) physical masses are available only with staggered fermions:

- rooting trick uncertainty
- check by more convenient fermion discretizations is desirable

At the moment simulations with strange and light quark at (almost) physical masses are available only with staggered fermions:

- rooting trick uncertainty
- check by more convenient fermion discretizations is desirable

In this project we investigate EoS with $N_f = 2 + 1 + 1$ twisted mass Wilson formulation

- theoretically safe but computationally very demanding
 - light masses are still large
 - $m_\pi^\pm \simeq$ 470, 370, 260, 210 MeV
- strange and charm quarks with realistic masses
- O(a) improvement at maximal twist
- ullet effects of dynamical charm on EoS are expected already at $\,\mathcal{T}\gtrsim350$ MeV
- crossover temperatures from several observables

Previous study with $N_f = 2$ twisted mass:

• F. Burger, E.-M. Ilgenfritz, M.P. Lombardo, M. Müller–Preussker [*tmfT*], Phys. Rev. D **91**, 074504 (2015)

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 3/17

Fixed-scale approach

Temperature on the lattice:

$$T=rac{1}{a\,N_{ au}}$$

Two approaches to study temperature dependence on practice:

- fixed N_{τ} (scans in coupling β)
- fixed scale $\beta(a)$, varying N_{τ}

Fixed-scale approach

Temperature on the lattice:

$$T=rac{1}{a\,N_{ au}}$$

Two approaches to study temperature dependence on practice:

- fixed N_{τ} (scans in coupling β)
- fixed scale $\beta(a)$, varying N_{τ}

We employ fixed scale approach here

- T. Umeda et al. [WHOT-QCD], Phys. Rev. D 79, 051501 (2009)
- significant economy on T = 0 simulations
- possibility to use fine lattices around T_c
- fixed spatial volume for wide temperature range

On the other hand:

- large lattice artifacts at high T (small N_{τ})
- higher statistics needed for low temperatures
- only discrete values of temperatures

The latter can be partially compensated by usage of odd $N_{ au}$ lattices

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 4/17

Lattice setup

Iwasaki action with the tree-level Symanzik improvements:

$$S_{g}[U] = \beta \left(c_{0} \sum_{P} [1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} (U_{P})] + c_{1} \sum_{R} [1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} (U_{R})] \right),$$
$$U_{P} = \nu \prod_{x \to \mu}, \quad U_{R} = \nu \prod_{x \to \mu} + \nu \prod_{x \to \mu} , \quad c_{0} = 3.648, \quad c_{1} = -0.331$$

Wilson twisted mass fermionic action for light and heavy doublets:

$$S_{f}^{I}[U,\chi_{I},\overline{\chi}_{I}] = \sum_{x,y} \overline{\chi}_{I}(x) \left[\delta_{x,y} - \kappa D_{W}(x,y)[U] + 2i\kappa a \mu_{I} \gamma_{5} \delta_{x,y} \tau^{3} \right] \chi_{I}(y) ,$$

$$S_{f}^{h}[U,\chi_{h},\overline{\chi}_{h}] = \sum_{x,y} \overline{\chi}_{h}(x) \left[\delta_{x,y} - \kappa D_{W}(x,y)[U] + 2i\kappa \mu_{\sigma} \gamma_{5} \delta_{x,y} \tau^{1} + 2\kappa \mu_{\delta} \delta_{x,y} \tau^{3} \right] \chi_{h}(y)$$

Lattice setup

U

Iwasaki action with the tree-level Symanzik improvements:

$$S_{g}[U] = \beta \left(c_{0} \sum_{P} [1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} (U_{P})] + c_{1} \sum_{R} [1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} (U_{R})] \right),$$

$$P = \nu \prod_{x \to \mu}, \quad U_{R} = \nu \prod_{x \to \mu} + \nu \prod_{x \to \mu} + c_{1} \prod_{x \to \mu} c_{0} = 3.648, \quad c_{1} = -0.331$$

Wilson twisted mass fermionic action for light and heavy doublets:

$$S_{f}^{I}[U,\chi_{I},\overline{\chi}_{I}] = \sum_{x,y} \overline{\chi}_{I}(x) \left[\delta_{x,y} - \kappa D_{W}(x,y)[U] + 2i\kappa a\mu_{I}\gamma_{5}\delta_{x,y}\tau^{3}\right]\chi_{I}(y),$$

$$S_{f}^{h}[U,\chi_{h},\overline{\chi}_{h}] = \sum_{x,y} \overline{\chi}_{h}(x) \left[\delta_{x,y} - \kappa D_{W}(x,y)[U] + 2i\kappa\mu_{\sigma}\gamma_{5}\delta_{x,y}\tau^{1} + 2\kappa\mu_{\delta}\delta_{x,y}\tau^{3}\right]\chi_{h}(y)$$

- hopping parameter κ = κ_c(β) is at maximal twist ⇒ automatic O(a) improvement
- twisted-mass parameters μ_{σ} and μ_{δ} are tuned to the physical point (K and D masses, on the 10 % level)

•
$$\chi_{I,h} = \exp\left(-i\pi\gamma_5\tau^3/4\right)\psi_{I,h}$$

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 5/17

Lattice configurations

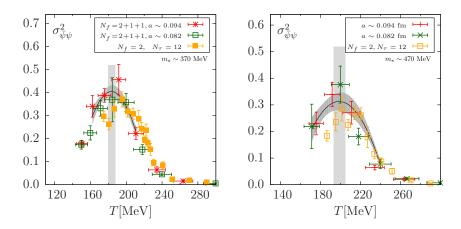
T = 0 (ETMC) nomenclature	$m^\pm_\pi~[{ m MeV}]$	$N_ au imes N_\sigma^3$	statistics
A60.24	364(15)	$\{3,4,5,6,7,8,9,10,11,12\}\times 24^3$	2k-7k
		$\{13,14\} imes 32^3$	5k,27k
B55.32	372(17)	$\{3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16\} imes 32^3$	2k-27k
		$\{4, 6, 8, 10, 12\} imes 24^3$	1k-8k
D45.32	369(15)	$\{6,8,10,12,14,16\}\times 32^3$	1k-12k
A100.24s	466(19)	$\{4, 6, 8, 10, 12\} imes 24^3$	2k-4k
		$\{14\} imes 32^3$	1k
B85.24	465(21)	$\{4, 6, 8, 10, 12\} imes 24^3$	3k-4k
		$\{14\} imes 32^3$	1k
A30.32	261(11)	$\{4, 6, 8, 10, 12\} imes 32^3$	1k-5k
		$\{20\} imes 48^3$	4k
B25.32	256(12)	$\{4,6,8,10,12,14,16,18\}\times 40^3$	2k-8k
D15.48	213(9)	$\{4,6,8,10,12,14,16,18,20,24\}\times 48^3$	2k-6k

- zero-temperature configurations from ETMC Collaboration
- lattice spacings and other parameters are available in the literature:
 - e.g., C. Alexandrou et al. [ETMC], Phys. Rev. D 90, 074501 (2014)

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 6/17

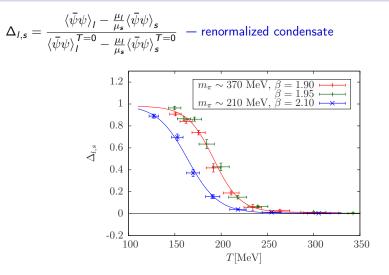
Pseudocritical temperature

 $\sigma_{\bar{\psi}\psi}^2 = \frac{V}{T} \left(\langle \bar{\psi}\psi^2 \rangle - \langle \bar{\psi}\psi \rangle^2 \right)$ — bare disconnected susceptibility



Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 7/17

Pseudocritical temperature



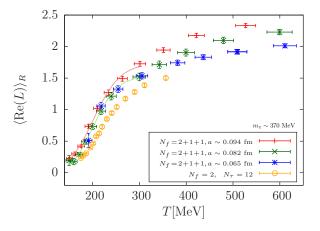
Fit to the tanh-function: $A + B \tanh[-C \times (T - T_c)]$

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 8/17

Pseudocritical temperature

Renormalized Polyakov loop:

$$\langle \mathrm{Re} \ \mathrm{L} \rangle_{R} = \langle \mathrm{Re} \ \mathrm{L} \rangle \exp[V(r_{0})/2T]$$



Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 9/17

Pseudocritical temperature — Summary

 T_{χ} — bare disconnected susceptibility $\sigma^2_{\bar{\psi}\psi}$ T_{Δ} — renormalized condensate Δ_{ls} T_{deconf} — Polyakov loop

 $N_f = 2 + 1 + 1$:

$\sim m_\pi^\pm$	T_{χ}	T_{Δ}	$T_{ m deconf}$
210	152(5)	164(3)	_
260	170(5)	—	—
370	184(4)	192(2)	201(3)
470	199(6)	_	_

Compare with $N_f = 2$:

$\sim m_\pi^\pm$	T_{χ}	$T_{ m deconf}$
360	193(13)	219(3)(14)
430	208(14)	225(3)(14)

• F. Burger et al. [tmfT], Phys. Rev. D 91, 074504 (2015)

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 10 / 17

Equation of State from the lattice

Pressure:

$$p = -\lim_{V \to \infty} f, \quad f = -\frac{T}{V} \ln \mathcal{Z}, \qquad p = \frac{1}{N_{\tau} N_{\sigma}^3} \ln \mathcal{Z}$$

Equation of State from the lattice

Pressure:

$$p = -\lim_{V \to \infty} f, \quad f = -\frac{T}{V} \ln \mathcal{Z}, \qquad p = \frac{1}{N_{\tau} N_{\sigma}^3} \ln \mathcal{Z}$$

Only derivatives of partition function $\ensuremath{\mathcal{Z}}$ are accessible

$$T\frac{\partial}{\partial T}\left(\frac{p}{T^4}\right) = \frac{\epsilon - 3p}{T^4}, \qquad \frac{p}{T^4} - \frac{p(T_0)}{T_0^4} = \int_{T_0}^T d\tau \frac{\epsilon - 3p}{\tau^5}, \quad p(T_0) \approx 0$$

Equation of State from the lattice

Pressure:

$$p = -\lim_{V \to \infty} f, \quad f = -\frac{T}{V} \ln \mathcal{Z}, \qquad p = \frac{1}{N_{\tau} N_{\sigma}^3} \ln \mathcal{Z}$$

Only derivatives of partition function $\ensuremath{\mathcal{Z}}$ are accessible

$$T\frac{\partial}{\partial T}\left(\frac{p}{T^4}\right) = \frac{\epsilon - 3p}{T^4}, \qquad \frac{p}{T^4} - \frac{p(T_0)}{T_0^4} = \int_{T_0}^T d\tau \frac{\epsilon - 3p}{\tau^5}, \quad p(T_0) \approx 0$$

Interaction measure (trace anomaly):

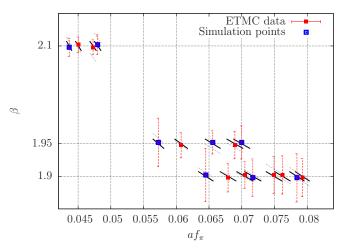
$$I(T) = \epsilon - 3p, \qquad \frac{I(T)}{T^4} = -\frac{1}{T^3 V} \left(\frac{d \ln \mathcal{Z}}{d \ln a}\right) = \frac{1}{T^3 V} \sum_i \frac{db_i}{da} \left\langle \frac{\partial S}{\partial b_i} \right\rangle$$

$$\frac{I(T)}{T^4} = N_{\tau}^4 \Big\{ \Big(-a \frac{d\beta}{da} \Big) \Big(\frac{c_0}{3} \langle \sum_{P} \operatorname{Re} \operatorname{Tr} U_P \rangle_{\operatorname{sub}} + \frac{c_1}{3} \langle \sum_{R} \operatorname{Re} \operatorname{Tr} U_R \rangle_{\operatorname{sub}} + \frac{\partial \kappa_c}{\partial \beta} \langle \bar{\chi} D_W[U] \chi \rangle_{\operatorname{sub}} - 2a\mu_I \frac{\partial \kappa_c}{\partial \beta} \langle \bar{\chi} i \gamma_5 \tau^3 \chi \rangle_{\operatorname{sub}} \Big) + 2\kappa_c \Big(a \frac{d(a\mu_I)}{da} \Big) \langle \bar{\chi} i \gamma_5 \tau^3 \chi \rangle_{\operatorname{sub}} + \operatorname{heavy terms} \Big\}$$
$$I(T) = I_{\text{gauge}} + I_{\text{light}} + I_{\text{heavy}}$$

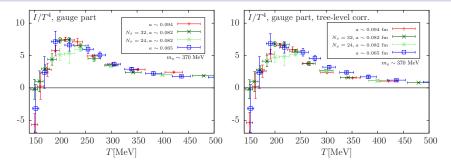
Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 11/17

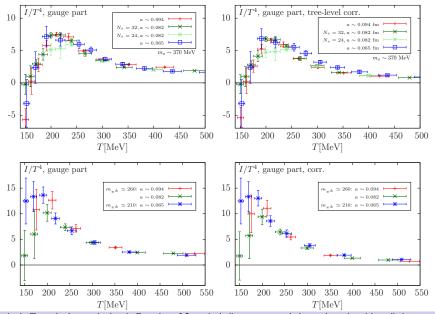
Beta functions

The generalized β -functions db_i/da are obtained from a global fit in π^{\pm} , K, and D masses, using $f_{\pi^{\pm}}$ to set the scale: $a\frac{db_i}{da} = (af_{\pi^{\pm}})\frac{db_i}{d(af_{\pi^{\pm}})}$



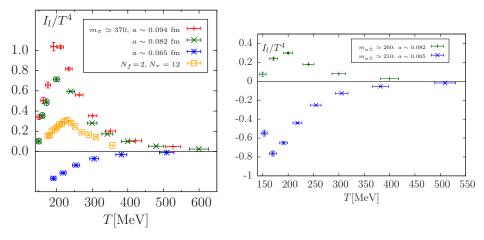
Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 12 / 17



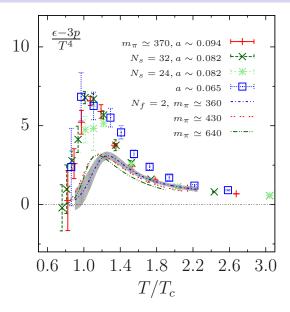


Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 13 / 17

Contributions from light quarks action:



Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 14/17



Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 15 / 17

Conclusions & Outlook

- Pseudocritical temperatures from gluonic and fermionic observables
- Downshift of T_c with addition of s and c quarks, as well as approaching physical $m_{\pi^{\pm}}$
- "Gluonic" part of trace anomaly shown in details, including tree-level corrections
- Light quarks contribution (still preliminary)

In prospective:

- Corrections from heavy part of the action
- Higher statistics for lower $m_{\pi^{\pm}}$, and so for β -functions (still large uncertainty to EoS)
- Continuum limit

Trunin A. Towards the quark-gluonic Equation of State including strange and charmed quarks with realistic masses 16 / 17

Thank you for attention!