Matching Hagedorn mass spectrum to Lattice QCD

Michał Marczenko

Institute of Theoretical Physics University of Wrocław

in collaboration with Pok Man Lo, Krzysztof Redlich, Chihiro Sasaki

Strangeness in Quark Matter 2015, Dubna 09.07.2015

Outline

1 Introduction

- 2 Hadron Resonance Gas Model and Hagedorn hypothesis
- 3 Hadron Resonance Gas Model vs Lattice QCD

4 Results

Introduction

QCD phase diagram

EQUATION OF STATE

relevant degrees of freedom

hadrons and their resonances

+

interactions

point-like and independent species

HADRON RESONANCE GAS MODEL

Mass spectrum of hadronic matter

discrete mass spectrum

$$\rho(m) = \sum_i d_i \delta(m - m_i)$$

 The same information can be stored in the cumulant

$$N(m) = \sum_i d_i \theta(m - m_i)$$

such that $\rho=\partial N/\partial m$

Mass spectrum of hadronic matter

One may decompose *ρ* into mesonic and baryonic sector

$$\rho = \rho^M + \rho^B$$

Mass spectrum of hadronic matter

One may decompose *ρ* into mesonic and baryonic sector

$$\rho = \rho^M + \rho^B$$

definite strangeness sectors

$$\begin{array}{rcl} \rho^{M} & = & \rho^{M}_{S=0} + \rho^{M}_{S=1} \\ \rho^{B} & = & \rho^{B}_{S=0} + \rho^{B}_{S=1} + \rho^{B}_{S=2} + \rho^{B}_{S=3} \end{array}$$

Idea of ideal HRG

$$\ln Z \approx \sum_{i \in mes} \ln Z_i^M + \sum_{i \in bar} \ln Z_i^B$$
$$\ln Z_i^{M/B} = \pm \frac{d_i V}{2\pi} \int_0^\infty \mathrm{d}p \ p^2 \ln \left[1 \pm e^{\hat{\mu}_i} e^{-\hat{E}_i}\right]$$

where
$$\hat{\mu}_i = B_i \hat{\mu}_B + S_i \hat{\mu}_S$$
, $\hat{\mu} \equiv \mu/T$, $\hat{E}_i \equiv E_i/T$

Pressure (Boltzmann approximation)

$$P = \frac{1}{\pi^2} \sum_{i \in had} d_i m_i^2 T^2 \mathcal{K}_2\left(\frac{m_i}{T}\right) \cosh \hat{\mu}_i, \quad \hat{P} \equiv \frac{P}{T^4} \bigg|_{\hat{\mu}_B = \hat{\mu}_S = 0}$$

Fluctuations in ideal HRG

 2^{nd} order correlations \rightarrow generalized susceptibilities

Generalized susceptibilities

0

$$\hat{\chi}_{xy} = rac{\partial^2 \hat{P}}{\partial \hat{\mu}_x \partial \hat{\mu}_y}, \quad x, y = B, S$$

$$\hat{\chi}_{BB} = \sum_{i} \frac{d_{i}}{\pi^{2}} \frac{m_{i}^{2}}{T^{2}} \mathcal{K}_{2}\left(\frac{m_{i}}{T}\right) \mathcal{B}_{i}^{2} \qquad \text{baryons}$$

$$\hat{\chi}_{BS} = \sum_{i} \frac{d_{i}}{\pi^{2}} \frac{m_{i}^{2}}{T^{2}} \mathcal{K}_{2}\left(\frac{m_{i}}{T}\right) \mathcal{S}_{i} \mathcal{B}_{i} \qquad \text{strange baryons}$$

$$\hat{\chi}_{SS} = \sum_{i} \frac{d_{i}}{\pi^{2}} \frac{m_{i}^{2}}{T^{2}} \mathcal{K}_{2}\left(\frac{m_{i}}{T}\right) \mathcal{S}_{i}^{2} \qquad \text{strange hadrons}$$

Hagedorn mass spectrum

the density of hadronic states increases exponentially

$$ho(m)\sim m^{-a}e^{m/T_H}$$

 existence of a limiting temperature, the Hagedorn temperature T_H, above which hadronic matter cannot exist.
 R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)

we use the following form

$$ho^{H}(m) = rac{A \ e^{m/T_{H}}}{\left(m^{2} + m_{0}^{2}
ight)^{5/4}}, \quad T_{H} \sim 180 \ {
m MeV}$$

Matching Hagedorn mass spectrum to Lattice QCD

Hadron Resonance Gas Model vs Lattice QCD

PDG vs Lattice QCD

Wuppertal: arXiv:1309.5258v2, HotQCD: arXiv:1203.0784v2

Matching Hagedorn mass spectrum to Lattice QCD

Hadron Resonance Gas Model vs Lattice QCD

PDG vs Lattice QCD

Wuppertal: arXiv:1309.5258v2, HotQCD: arXiv:1203.0784v2

Missing resonances

- \hat{P} and $\hat{\chi}_{BB} \longrightarrow$ fit LQCD results
- $\hat{\chi}_{BS} \longrightarrow$ missing resonances in the strange baryonic sector
- $\hat{\chi}_{SS} \longrightarrow$ missing resonances in the strange sector

Known states are not sufficient

Goal: Identify the origin of the discrepancies in the strange hadronic sector of the HRG model

Importance of high-mass resonances at T = 0.15 GeV

0 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 T [GeV]

Inconsistence of previous results

• different T_H for mesons and baryons based on cumulants

•
$$T_{H}^{M} = 197 \text{ MeV}$$

• $T_{H}^{B} = 141 \text{ MeV} < T_{c} \sim 155 \text{ MeV} \Rightarrow \text{inconsistent with LQCD}$

W. Broniowski *et al*: Phys. Lett B **490**, 223 (2000),

Phys. Rev. D 70, 117503 (2004)

Our key assumptions:

- the same crossover temperature \Rightarrow the same T_H in all sectors,
- $T_H > T_c$ for the observables to be consistent with LQCD,
- quality of the fits is judged by the LQCD constraints.

Improved Hagedorn mass spectrum Problem:

• cannot fit ρ^H in the low-mass region.

Solution:

- exclude ground states from the fit,
- start the fit from the first resonance m_x in given sector.

The improved Hagedorn spectrum reads

$$\rho(m) = \sum_{G.S.} d_i \delta(m - m_i) + \theta(m - m_x) \rho^H(m)$$

And the cumulant

$$N(m) = \sum_{G.S.} d_i \theta(m-m_i) + \theta(m-m_x) \int_{m_x}^m \mathrm{d}m \;
ho^H(m)$$

Fit to PDG cumulants

Heavy resonanes capture the difference only for high T

Wuppertal: arXiv:1309.5258v2, HotQCD: arXiv:1203.0784v2

Results \rightarrow fit to observables

Wuppertal: arXiv:1309.5258v2, HotQCD: arXiv:1203.0784v2

Results \rightarrow mass spectrum

Results \rightarrow mass spectrum

Conclusions

Conclusions

We addressed the problem of missing strange resonances in the HRG model

- It is possible to use common Hagedorn temperature for baryons and mesons
 - $T_H \leq T_c$ to comply with LQCD results,
 - functional form not suitable in the low-mass region;
- substantial contribution from high-mass strange states to the fluctuations near T_c
 - Hagedorn spectra are consistent with both observables and not yet established strange baryons spectra,
 - result for strange mesons spectrum → extra undiscovered heavy states?
- new eperimental data and further LQCD studies would be extremely helpful in claryfing these issues.

└─ The Very Last Slide

The End