Low-Mass Dielectron Measurements in pp, p-Pb and Pb-Pb Collisions with ALICE

UNIVERSITA

FRANKFURT AM MAIN

Mahmut Özdemir on behalf of the ALICE Collaboration

Institut für Kernphysik, Goethe-Universität Frankfurt Strangeness in Quark Matter 2015, Dubna 10.07.2015 GOETH

Outline

- Physics Motivation
- The ALICE Detector Setup
- Analysis Techniques
- pp & p-Pb Results
- Status of Pb-Pb Analysis
- Perspectives in Run2 & Run3
- Summary & Outlook

Dielectrons in heavy-ion collisions

- emitted throughout the collision
- negligible final-state interaction

Dielectrons in heavy-ion collisions

- emitted throughout the collision
- negligible final-state interaction
- 1. Low-Mass Region (LMR)
- > Dalitz decays (π^0 , η , η') & resonances (ρ , ω , ϕ)
- In-medium modifications related to chiral symmetry restoration

Dielectrons in heavy-ion collisions

- emitted throughout the collision
- negligible final-state interaction
- 1. Low-Mass Region (LMR)
- > Dalitz decays (π^0 , η, η') & resonances (ρ , ω , ϕ)
- In-medium modifications related to chiral symmetry restoration
- 2. Intermediate-Mass Region (IMR)
- Semi-leptonic decays of charm and beauty mesons
- Thermal radiation of Quark Gluon Plasma (QGP)

Dielectrons in heavy-ion collisions

- emitted throughout the collision
- negligible final-state interaction
- 1. Low-Mass Region (LMR)
- > Dalitz decays (π^0 , η, η') & resonances (ρ , ω , ϕ)
- In-medium modifications related to chiral symmetry restoration
- 2. Intermediate-Mass Region (IMR)
- Semi-leptonic decays of charm and beauty mesons
- Thermal radiation of Quark Gluon Plasma (QGP)
- 3. High-Mass Region (HMR)
- Quarkonia, semi-leptonic decays of beauty mesons, Drell-Yan
- Deconfinement effects in the QGP

Dielectrons in heavy-ion collisions

- emitted throughout the collision
- negligible final-state interaction

1. Low-Mass Region (LMR)

- > Dalitz decays (π^0 , η, η') & resonances (ρ , ω , ϕ)
- In-medium modifications related to chiral symmetry restoration
- 2. Intermediate-Mass Region (IMR)
- Semi-leptonic decays of charm and beauty mesons
- Thermal radiation of Quark Gluon Plasma (QGP)
- 3. High-Mass Region (HMR)
- Quarkonia, semi-leptonic decays of beauty mesons, Drell-Yan
- Deconfinement effects in the QGP

A. Drees, Nucl. Phys. A 830, 435c (2009)

Dielectrons in ppMedium-free baselineDielectrons in p-AInitial state effects & modifications from cold nuclear matter effects

The ALICE Detector Setup

Main detectors for dielectron analysis

- Inner Tracking System (ITS)
 - Tracking and vertexing
 - Particle identification (PID) via specific energy loss (dE/dx) in silicon
- Time Projection Chamber (TPC)
 - Main tracking device
 - PID using dE/dx in gas mixture (Ne/CO₂)
- Time Of Flight (TOF)
 - PID for hadron rejection
- Transition Radiation Detector (TRD)
 - Online electron trigger

Data samples

- > pp at \sqrt{s} = 7 TeV, 300 M minimum bias events
- > p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, 106 M minimum bias events
- Pb-Pb at \(\sqrt{S_{NN}}\) = 2.76 TeV, 17 M (0-10 %), 12 M (20-50 %) 10.07.2015 M. Özdemir, Low-Mass Dielectrons in ALICE

Electron Identification

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044 M. Özdemir, Low-Mass Dielectrons in ALICE

10.07.2015

> TPC

- Electron selection, pion rejection ($p_T > 0.2 \text{ GeV/c}$)
- > ITS
 - Electron selection ($p_{T} > 0.2 \text{ GeV/c}$)
- > TOF
 - Kaon and proton rejection ($p_{T} > 0.4 \text{ GeV/c}$)

Signal Extraction

Unlike-sign (ULS) pairs:

real signal, correlated and combinatorial background

Like-sign (LS) pairs:

corr. and comb. background estimation using

$$2\sqrt{N_{++}N_{--}}$$

Signal = ULS – $LS \times R$

R: Acceptance correction factor

S/B Ratio

- Signal-to-background ratios:
 - **pp:** S/B > 4%
 - **p-Pb:** S/B > 2%

S/B Ratio

- Signal-to-background ratios:
 - **pp:** S/B > 4%
 - **p-Pb:** S/B > 2%

Challenging analysis

- Semi-central Pb-Pb: S/B > 1%
- **Central Pb-Pb:** S/B > 0.2%

Mass Spectrum in pp Collisions

- Hadronic cocktail
 - Hybrid cocktail framework for ALICE based on PYTHIA and EXODUS PHENIX, Phys. Rev. C 81, 034911 (2010)
- Cocktail inputs in pp collisions:
 - measured p_T spectra of π⁰, η, φ, J/ψ
 - other mesons obtained from *m*_T scaling
 - semi-leptonic decays of charm mesons from PYTHIA based on cross section measured in pp collisions at 7 TeV

- Data and cocktail in agreement
- Syst. uncertainties of the data: mainly from background subtraction
- > Syst. uncertainties of the cocktail (for $m_{ee} > 0.5 \text{ GeV}/c^2$): mainly from charm cross section

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Resonances in pp Collisions

- \succ ω and ϕ resonance cross sections obtained from the e⁺e⁻ channel for pp collisions at \sqrt{s} = 7 TeV
- \succ The results compared to measurements in hadronic and $\mu^+\mu^-$ decay channels
- \succ **\omega**: p_T spectra in the e⁺e⁻ channel and in the $\pi^0 \pi^+ \pi^-$ decay channel complement each other
- \blacktriangleright **\phi:** p_T spectrum in the e⁺e⁻ channel agrees with the p_T spectrum in the K⁺K⁻ decay channel

OETHE X Virtual Direct Photons in pp Collisions

- > Aim: direct photon cross section in pp collisions at \sqrt{s} = 7 TeV
- > Number of virtual photons per real photon calculated by Kroll-Wada equation

$$f \text{ or } p_T^{ee} \gg m_{ee} \quad \frac{1}{N_{\gamma}} \frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha_{e.m.}}{3\pi} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right) \frac{1}{m_{ee}}}$$

$$\stackrel{10}{\xrightarrow{p_{\gamma} 0.2 \text{ GeV/c}}} \stackrel{10}{\xrightarrow{p_{\gamma} 0.2 \text{ GeV/c}}} \stackrel{10}{\xrightarrow{(1-r)^* f_{\text{cocktail}}} + r^* f_{\gamma, dir}}}_{\text{int}} \Rightarrow \text{ Fit function:} \\f_{\text{comb}} = (1-r) \times f_{\text{cocktail}} + r \times f_{\gamma, dir}}$$

$$\Rightarrow f_{\text{comb}} : \text{ combined fit function}} \Rightarrow f_{\text{cocktail}} : \text{ cocktail sum}} \Rightarrow f_{\gamma, dir} : \text{ photon input from Kroll-Wada}}$$

$$\Rightarrow \text{ Fit parameter } r \text{ reflects the ratio of direct over inclusive photons}}$$

Direct Photon Fraction vs. p_{T}

- > Extraction of fit parameter r in various p_{T} ranges
- Assumption: $r = \gamma_{direct} / \gamma_{inclusive}$

GOETHE

Direct photon spectrum can be calculated:

 $\gamma_{\text{direct}} = r \times \gamma_{\text{inclusive}}$

Direct Photon Fraction vs. p_{T}

Extraction of fit parameter r in various p_{τ} ranges

GOETHE

Mass Spectrum in p-Pb Collisions

Hadronic cocktail inputs in p-Pb collisions:

- measured p_{T} spectra of π^{\pm}
- other mesons obtained from m_T scaling
- semi-leptonic decays of charm and beauty mesons from PYTHIA in pp collisions scaled by number of binary collisions <*N*_{coll}>
- Measurement and cocktail in agreement within systematic uncertainties (mainly from charm contribution)
- No strong conclusion on cold nuclear matter effects, also no evidence for charm suppression due to the large systematic uncertainties

ALI-PREL-69715

GOETHE

*m*_{ee} < 0.14 GeV/*c*²
 → dominated by π⁰

 m_{ee} < 0.14 GeV/c²
 → dominated by π⁰

▶ 0.14 < m_{ee} < 0.75 GeV/ c^2 ▶ dominated by η and charm

▶ 0.75 < m_{ee} < 1.1 GeV/c² (resonance region)
 ▶ dominated by charm

ALI-PREL-69739

- ▶ 0.75 < m_{ee} < 1.1 GeV/c² (resonance region)
 ▶ dominated by charm
- ▶ $1.1 < m_{ee} < 3.0 \text{ GeV}/c^2$
- dominated by charm
- Data and cocktail in agreement

Mass Spectrum in Pb-Pb Collisions

- After a successful running period from Nov. 2009 to Jan. 2013 (Run1), the new data taking period (Run2) started in June 2015
- First pp collisions at 13 TeV

http://alicematters.web.cern.ch/?q=content/node/838

- > Dielectron measurements are challenging, we will benefit from more statistics
- ALICE Transition Radiation Detector (TRD) completed
- ➢ Major upgrades will be done for Run3 (starts ~2020)

10.07.2015

ALICE Upgrade for Run3

- ITS and TPC will be upgraded for Run3 during the Long Shutdown 2 (2018-2019)

- With upgraded ITS (better tracking capability at low p_T), factor 2 improvement for signal-to-background ratio (S/B) achieved
- Current readout chambers of TPC will be replaced with GEM (Gas Electron Multiplier) foils in order to provide continuous readout of TPC at 50 kHz interaction rate (100x higher data taking rate)

ALICE Collaboration, J. Phys. G41 (2014) 087001

- Comparison of current ITS+TPC to upgraded ITS+TPC
- Current ITS+TPC: 25 M central (0-10 %) Pb-Pb events at $\sqrt{s_{NN}}$ = 5.5 TeV (current readout rate)
- **Upgraded ITS+TPC:** 2.5 G Pb-Pb events at $\sqrt{s_{NN}} = 5.5$ TeV (continuous readout)
- New ITS & TPC: smaller systematic uncertainty on the background and charm, improved statistical precision

Summary & Outlook

- Invariant mass spectrum in pp collisions consistent with cocktail calculations
- > pQCD NLO calculations consistent with direct photon spectrum in pp collisions
- Preliminary p-Pb results (invariant mass and p_T spectra) in agreement with cocktail calculations
- Pb-Pb analysis ongoing
- Run1 analysis is being finalized
 - Improved hadronic cocktail
- Run2 started in June 2015
 - will benefit from more statistics
- Major upgrades of ITS and TPC will be implemented for Run3
 - Significant increase of data taking rate and S/B ratio
 - Improvement of statistical and systematic uncertainties

Backup

Acceptance Correction Factor

- ULS and LS pairs have different acceptances
- Estimated via event mixing technique:

$$R = \frac{\text{ULS}_{\text{mix}}}{\text{LS}_{\text{mix}}}$$

 \geq R < 1: In the very low-mass region

Systematics in pp Collisions

$\omega \& \varphi$ in pp Collisions

Mass Spectrum for different p_{T}

GOETHE

Direct Photon Ratio in pp Collisions

Mass Spectrum in p-Pb ($p_T > 0.4 \text{ GeV}/c$)

p_{T} Spectra in p-Pb ($p_{T} > 0.4 \text{ GeV}/c$)

 $\gg m_{\rm ee} < 0.14 \, {\rm GeV}/c^2$ \blacktriangleright 0.14 < $m_{\rm ee}$ < 0.75 GeV/ c^2 dominated by η and charm \succ dominated by π^0 $1/N_{evt}^{NSD} dN/dp_T^{ee} ((GeV/c)^{-1})$ $1/N_{evt}^{NSD} dN/dp_T^{ee}$ ((GeV/c)⁻¹) **ALICE Preliminary ALICE** Preliminary Cocktail sum with uncertainties Cocktail sum with uncertainties $\eta \rightarrow \gamma ee$ p-Pb NSD $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ p-Pb NSD $\sqrt{s_{NN}}$ = 5.02 TeV $\pi^0 \rightarrow \gamma ee$ $\omega \rightarrow ee and \omega \rightarrow \pi^0 ee$ $p_{\tau}^{\rm e} > 0.4 \; {\rm GeV}/c$ $p_{\tau}^{\rm e} > 0.4 \, {\rm GeV}/c$ 10^{-2} $\phi \rightarrow ee and \phi \rightarrow \eta ee$ $m_{\rm ee} < 0.14 \; {\rm GeV}/c^2$ $0.14 < m_{ee} < 0.75 \text{ GeV}/c^2$ $\eta \rightarrow \gamma ee$ $\eta' \rightarrow \gamma ee$ 10⁻² $|\eta^{e}| < 0.8$ $|\eta^{\rm e}| < 0.8$ $\rho \rightarrow ee$ $\omega \rightarrow ee and \omega \rightarrow \pi^0 ee$ 10^{-3} $c\overline{c}$ (pp PYTHIA MNR, $\sigma_{c\overline{c}} = 6.9$ mb) $\overline{=}$ $b\overline{b}$ (pp PYTHIA MNR, $\sigma_{b\overline{b}} = 210\mu b$) (Like-sign subtracted) 10-4 10⁻³ 10⁻⁵ 10⁻⁶ 2 data/cocktail data/cocktail 1.5 1.5 0.5 0.5E 0₀ 2.5 0.5 1.5 2 2.5 0.51.5 p_{τ}^{ee} (GeV/c) $p_{\tau}^{\rm ee}$ (GeV/c) ALI-PREL-69727 ALI-PREL-69735

$p_{\rm T}$ Spectra in p-Pb ($p_{\rm T} > 0.4 \text{ GeV}/c$)

10.07.2015

M. Özdemir, Low-Mass Dielectrons in ALICE

- Contributions of **the semi-leptonic heavy-flavor decays** based on cross sections measured in pp at $\sqrt{s} = 2.76$ and 7 TeV
- For contributions in p-Pb and Pb-Pb collisions, pp expectations scaled by number of binary collisions <*N*_{coll}>
- Cross sections at $\sqrt{s} = 5.02$ TeV estimated by interpolation from FONLL (Fixed Order + Next-to-Leading Log) M. Cacciari, S. Frixione and P. Nason arXiv:hep-ph/0102134
- J/Ψ based on pp calculations (scaled to p-Pb measurements)
 10.07.2015
 M. Özdemir, Low-Mass Dielectrons in ALICE