Azimuthal Anisotropy of ϕ -Meson in U+U and Au+Au Collisions at RHIC

Vipul Bairathi (For the STAR collaboration)

National Institute of Science Education and Research, India

<u>Outline</u>

- Introduction & Motivation
- ✤ STAR Experiment at RHIC
- Results
- Summary

15th Strangeness in Quark Matter July 6-11, 2015 Dubna, Russia

P. Klob, U. W. Heinz, Nucl. Phys. A715, (2003) 653c, A.M. Poskanzer & Voloshin, Phys.Rev. C58 (1998)

Motivation

- φ-Meson: clean probe for QGP medium
 - Small hadronic interaction cross-section
 - ► Long life time ~42 fm/c
 - A. Shor; Phys. Rev. Lett. 54, 1122 (1985)
 - A. Sibirtsev et al., Eur. Phys. J. A29, 209–220 (2006)
 - Md. Nasim et al., Phys. Rev. C87(2013) 1, 014903
- Expectations from theoretical model:
 - Hydrodynamic models suggest scaling of higher order flow harmonics with elliptic flow v₂.

$$v_4/v_2^2 = 0.5$$
 $v_3/v_2 = constant at high p_T$

• According to Dynamic coalescence model

 $\frac{v_{4,M}(2p_T)}{v_{2,M}^2(2p_T)} \approx \frac{1}{4} + \frac{1}{2} \frac{v_{4,q}(p_T)}{v_{2,q}^2(p_T)}, \text{ for mesons}$

- C. W. Chen and C. M. Ko, Phys. Rev. C 73, 044903 (2006)
- Comparison between U+U and Au+Au collisions:
 - Deformed shape of Uranium nuclei leads to different type of initial configurations like Body-Body, Tip-Tip and Body-Tip.
 - Higher particle density in U+U compared to Au+Au collisions at the same center of mass energy.

• Md. Rihan Haque et al., Phys.Rev. C85 (2012) 034905

STAR Experiment at RHIC

Particle Identification

- STAR TPC detector:
 - Pseudo-rapidity: $-1.0 < \eta < 1.0$
 - Identifies kaon upto p = 0.65 GeV/c

$$-\langle \frac{dE}{dx} \rangle \sim A\left(1 + \frac{m^2}{p^2}\right) \qquad N\sigma = \frac{1}{R} \times \log\left(\frac{dE/dx_{measured}}{dE/dx_{theory}}\right)$$

STAR ToF detector:

- Pseudo-rapidity: $-0.9 < \eta < 0.9$
- * Identifies kaon for 0.65

$$\langle t \rangle = \frac{L}{\beta}$$
 $\frac{1}{\beta} = \sqrt{1 + m^2/p^2}$

STAR detector has:

- Magnetic Field 0.5 Tesla
- Uniform Acceptance in $|\eta| < 1.0$ and $(0,2\pi)$ azimuthal angle
- M. Anderson et al., Nucl. Instrum. Meth. A 499 (2003) 659
- W. J. Llope et al., Nucl. Instrum. Meth. A522 (2004) 252-273

- φ -Meson decay: $\varphi \rightarrow K^+ K^- (BR 48.9\%)$
- φ-Meson signal reconstruction using invariant mass technique

$$M_{\varphi} = \sqrt{(E_{K^+} + E_{K^-})^2 - (\vec{p}_{K^+} + \vec{p}_{K^-})^2}$$

Background reconstruction using mixed event technique

 Invariant mass distribution of φ-Meson signal fitted with Breit-Wigner + 1st order polynomial.

$$\frac{dN}{dm_{inv}} = \frac{A\Gamma}{(m_{inv} - m_0)^2 + \frac{\Gamma^2}{4}} + B(m_{inv}) + C$$

PDG: $m_0 = 1019.46 + 0.019$ MeV, $\Gamma = 4.266 + 0.03$ MeV

Analysis Method

• Φ - Ψ_n binning method

• ϕ -meson yield as a function of ϕ - ψ_n is fitted with the following function for different p_T ranges.

$$\frac{dN}{d(\phi - \psi_n)} = A \left(1 + \sum_{i=2}^n 2\nu_i \cos(\phi - \psi_i) \right)$$
--(1)

- Invariant mass method
 - Ratio α calculated from invariant mass distribution of φ-meson signal and signal + background.

$$\alpha(m_{in\nu}) = \frac{Sig(m_{in\nu})}{(Sig + Bkg)(m_{in\nu})}$$
$$v_n^{S+B}(m_{in\nu}) = \alpha(m_{in\nu})v_n^{Sig} + [1 - \alpha(m_{in\nu})]v_n^{Bkg}$$

- v_n^{Bkg} is parameterized using 3rd order polynomial function.
- A. M. Poskanzer and S. Voloshin, Phys. Rev. C58(1998) 1671–1678
- N. Borghini and J. Y. Ollitrault, Phys. Rev. C70 (2004) 064905,

--(2)

6

• Event plane angle defined as

$$\psi_n = \left(\tan^{-1} \left[\frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right] \right) / n$$

- Event plane angle Ψ_n is calculated in two different windows 'a' (0.05 < η < 1.0) and 'b' (-1.0 < η < -0.05).
- Event plane resolution then given by:

$$R = \sqrt{\cos n (\psi_n^a - \psi_n^b)}$$

- Resolution correction has been done for small centrality bins for each event.
- A. M. Poskanzer & S. A. Voloshin, Phys. Rev. C58 (1998) 1671-1678
- Hiroshi Masui, A. Schmah arXiv:1212.3650(2012)

- Statistical errors are shown by vertical lines.
- Systematic uncertainties has been done by varying different analysis cuts(e.g. collisions vertex position, dca to the primary vertex and number of fits points for reconstruction of the tracks etc.).
- Systematic errors on v_n are calculated using rms deviation relative to v_n values and it is shown by bands.

Minimum bias collisions

- ✓ v_n values for ϕ -meson are of similar order in U+U and Au+Au collisions for 0-80% centrality.
- ✓ v_n for ϕ -meson have similar p_T dependence in U+U and Au+Au collisions for 0-80% centrality.
- ✓ φ -meson $v_2 > v_3 > v_4 > v_5$ for both U+U and Au+Au collisions.

Statistical errors are shown by vertical lines and systematic errors are shown by bands.

- v_n of φ -meson for U+U and Au+Au collisions are comparable for different centralities.
- ✓ v_2 of ϕ -meson shows strong centrality dependence in both U+U and Au+Au collisions.
- ✓ v_3 , v_4 and v_5 doesn't show clear centrality dependence.

✓ v_3/v_2 ratio of ϕ -meson for $p_T > 1.5$ GeV/c is constant for both U+U and Au+Au collisions and supportive of the hydrodynamic picture.

arXiv:1312.7763v1(2013) C. Lang and N. Borghini

Result: v_4/v_2^2

- ✓ v_4/v_2^2 ratio of ϕ -meson is constant for U+U and Au+Au collisions.
- v₄/v₂² ratio seems to be higher for central collisions compare to peripheral collisions in both U+U and Au+Au collisions.
 C. W. Chen and C. M. Ko, Phys. Rev. C 73, 044903 (2006)
- ✓ v_4/v_2^2 ratio is higher than a hydrodynamic model in both U+U and Au+Au collisions.

Summary

- ♦ φ-meson azimuthal anisotropy coefficients v_n (n = 2,3,4,5) has been studied and compared between U+U and Au+Au collisions at $√s_{NN}$ = 193 GeV and 200 GeV, respectively.
- \blacklozenge $\phi\text{-meson}$ v_n are comparable in both U+U and Au+Au collisions for all collision centralities.
- Strong centrality dependence for v₂ is observed and no clear centrality dependence is observed for v₃, v₄ and v₅ in both U+U and Au+Au collisions.
- * v_3/v_2 ratio of φ -meson for $p_T > 1.5$ GeV/c is constant for both U+U and Au+Au collisions and consistent with the hydrodynamic model.
- The measured values of v_4/v_2^2 are higher than expected from a hydro model.
- v₄/v₂² ratio seems to be higher for central collisions compare to peripheral collisions in both U+U and Au+Au collisions.

Thank You