# $K_S^0$ analysis

Natalia Rogacheva

LHEP, JINR

SPD Physics Meeting 27 December 2022



< 1 k

### Event and track selection for the $V^0$ analysis

#### Event sample

SpdRoot 4.1.4 Generation: Pythia 8, (p+p) at  $\sqrt{5}$ =27 GeV, SoftQCD(MB). 4 000 000 events (1 sec of data taking)

#### V0 selection:

input parameters for SpdMCKFpartRCV0Finder:

- 1 fMinItsHists = 3 minimum Its hits for track selection
- **2** fDaughters =  $K^0(-211, 211), \Lambda(2212, -211), \overline{\Lambda}(-2212, 211);$ Bg = (321, -321), (-321, 211), (321, -211).
- IfMinChi2PV = 2.0 minimum chi2 track to PV (primary selection)
- Image: MinChi2Part = 2.0 minimum chi2 between 2 tracks (primary selection)

#### Distributions of the $V^0$ candidates in the Podolanski-Armenteros without selection cuts



N. Rogacheva (SPD Physics Meeting)

27 December 2022 3 / 18

### The collinearity cut



• 
$$FOM = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}};$$

This cut selects V<sup>0</sup> events the momentum looking at the PV.  $\theta_{coll} < 0.03 \text{ rad for } K^0.$ 

# Invariant mass of $K^0$ for different cuts

 $\theta_{coll} < 0.03$ 



N. Rogacheva (SPD Physics Meeting)

 $K_{\rm S}^0$  analysis

27 December 2022 5 / 18

The selected  $V^0$  candidates are ploted in  $(p,\theta)$ ,  $(p_T, x_F)$  and  $(p_T, \eta)$  phase space Pure Pythia 8,  $K^0$ 



Reconstruction data, cuts:  $K^0 \pm 2\sigma$  and  $\theta_{coll} < 0.03$  rad.



#### Binning



The choice of the binning scheme is obtained from distribution of  $K^0$  simulated in Pythia 8. It was done to have the similar number of  $K^0$  in bins  $(n_{bin}^{\theta} = 4, n_{bin}^{p} = 10)$ .

#### Distributions of the ${\cal K}^0$ candidates with only cut $\theta_{\it coll} < 0.03$



#### Distributions of the ${\cal K}^0$ candidates with cuts $\chi^2/\textit{ndf}$ <10 and isgood



 $K_{S}^{0}$  analysis

#### Result of the fit (number of $K^0$ in p for fixed $\theta$ interval)



#### Mean mass and sigma of $K^0$ (in p for fixed $\theta$ interval)



N. Rogacheva (SPD Physics Meeting)

27 December 2022 11/18

#### $K^0$ reconstruction efficiency with all corrections included (A= $N_{Rec}^{MC}/N_{pythia}^{MC}$ )



27 December 2022 12/18

 $K_c^0$  analysis

# Conclusion and TODO

- Analysis of various factors affecting the K<sup>0</sup><sub>S</sub> reconstruction efficiency was performed.
- **2**  $K_S^0$  reconstruction efficiency depends on p and  $\theta$  and in general is not larger then 40%.
- Oriterium isgood rejects many signal events. Particularly for low momentum (p=0-1.5 GeV).
- Further apply this procedure for  $\Lambda$  and  $\overline{\Lambda}$ .

### Backup slides

| $\theta$  | heta        | heta      | $\theta$    |
|-----------|-------------|-----------|-------------|
| 0 - 0.33  | 0.33 - 0.63 | 0.63-1.03 | 1.03 - 1.57 |
| р         | р           | р         | р           |
| 0-0.6     | 0-0.4615    | 0-0.35    | 0-0.29      |
| 0.64-0.90 | 0.46-0.63   | 0.35-0.47 | 0.29-0.38   |
| 0.90-1.13 | 0.63-0.78   | 0.47-0.57 | 0.38-0.47   |
| 1.13-1.36 | 0.78-0.92   | 0.57-0.67 | 0.47-0.55   |
| 1.36-1.60 | 0.92-1.08   | 0.67-0.78 | 0.55-0.63   |
| 1.60-1.88 | 1.08-1.24   | 0.78-0.90 | 0.63-0.73   |
| 1.88-2.20 | 1.24-1.44   | 0.90-1.04 | 0.73-0.84   |
| 2.20-2.62 | 1.44-1.70   | 1.04-1.23 | 0.84-0.99   |
| 2.62-3.23 | 1.70-2.10   | 1.23-1.50 | 0.99-1.21   |
| 3.23-4.5  | 2.10-3      | 1.50-2.2  | 1.21-1.8    |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Distributions of the $K^0$ candidates



 $K_{S}^{0}$  analysis

#### Distributions of the ${\cal K}^0$ candidates with only cut $\chi^2/{\it ndf}$ <10



 $K_{S}^{0}$  analysis

#### Nhits distributions of the $K^0$ in p for fixed $\theta$ interval



N. Rogacheva (SPD Physics Meeting)

 $K_{\rm S}^0$  analysis

### Problem!!!



э

A D N A B N A B N A B N