Influence of geometrical acceptance and reconstruction efficiency on the π^0 phase-space

Ruslan Akhunzyanov JINR

SPD Physics Weekly Meeting

December 27, 2022

Part I. Influence of geometrical acceptance and reconstruction efficiency on the π^0 phase-space

I look at how the π^0 kinematical distributions (in *p*- θ , x_F - p_T , η - p_T variables) change when different requirements related to the acceptance / reconstruction procedure are successively applied.

- 1) All π^0 from MC simulation
- 2) Require that both photons from π^0 decay reached ECAL
- 3) Require \geq 2 different clusters from these photons in ECAL.
- 4) Exclude multi-particle clusters associated with charged particles.
- 5) Apply cut on the clusters minimal energy (E > 0.3 GeV).
- 6) Exclude π^0 with reconstructed mass outside $\mu \pm 3\sigma$ range.

π^0 phase-space: *p*- θ

 π^0 phase-space: $x_F - p_T$

π^0 phase-space: η - p_T

Part II. Influence of the cut on the minimal energy of cluster (E_{\min}) on fit parameters and signal / background

• The distribution of the invariant mass of pairs of ECAL clusters with $E > E_{\min}$ is fitted by function:

$$f(m) = \frac{I}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(m-\mu)^2}{2\sigma^2}\right] + \underbrace{(a_0 + a_1m + a_2m^2)}_{\text{background}}$$

• This procedure is applied for different values of E_{\min} from 0 to 1 GeV with step 0.05 GeV.

Invariant mass distribution for different E_{\min} : neutral clusters

Invariant mass distribution for different E_{\min} : all clusters

Dependence of fit parameters, S/B ratio, and FoM on E_{\min}

