

Вортисити и поляризация Л-гиперонов в AuAu 7.7GeV столкновениях в модели PHSD

Е.Коломийцев, В.Д.Тонеев, В.Воронюк

27 октября 2017

イロト 不得下 イヨト イヨト

EOS

Vorticity

summary

STAR BES

"Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid" arXiv:1701.06657

Измеряют по угловому распределению продуктов распада $\Lambda \to p + \pi^-$

$$4\pi \frac{\mathrm{d}N}{\mathrm{d}\Omega^*} = 1 + \alpha_\Lambda \vec{P}^* \vec{n}_p^*$$

в системе покоя распадной частицы.

Поляризация вдоль вектора углового момента системы/поперек плоскости реакции.

В.Воронюк

27 октября 2017

2 из 17

intro def PHSD EOS Vorticity summary Введение

В столкновениях тяжелых ионов рождается среда со свойствами сильно-взаимодействующей жидкости.

Периферические столкновения

- Большой угловой момент $\sim (10^3 10^5)\hbar$
- "Жидкая капля"с вязкостью

(日) (周) (日) (日) (日)

Возникает при наличии сдвига между слоями сплошной среды. Причудливые облака. Волны на поверхности воды.

イロト イポト イヨト イヨト

Эффект Эйнштейна — де Гааза

Тело (ферромагнетик) при намагничивании вдоль некоторой оси приобретает относительно неё вращательный импульс.

Эффект Барнетта

Намагничивание тел путем их вращения при отсутствии внешнего магнитного поля.

Возможные наблюдаемые эффекты вращения ядерной среды

★ Локальное нарушение четности (Chiral Vortical Effect) Phys.Rev.C 82, 054910 (2010)

🔀 Поляризация частиц Phys.Rev.Lett. 94, 102301 (2005)

◊ Мы будем рассматривать AuAu столкновения при 7.7 GeV b=6fm

intro def PHSD EOS Vorticity aummary Определения

Кинематическое определение вортисити в классической гидродинамике

$$\omega = \frac{1}{2} \operatorname{rot} \mathbf{v}$$

(日) (四) (E) (E) (E) (E)

Определения

Кинематическое определение вортисити в классической гидродинамике

$$\omega = \frac{1}{2} \operatorname{rot} \mathbf{v}$$

Релятивистское определение вортисити

$$\omega_{\mu\nu} = \frac{1}{2} (\partial_{\nu} u_{\mu} - \partial_{\mu} u_{\nu})$$

где u_{ν} локальный четыре-вектор скорости среды.

$$u_{\nu}(x) = \gamma(1, \mathbf{v}(x)), \quad \gamma(x) = \frac{1}{\sqrt{1 - \mathbf{v}^2(x)}}$$

Вортисити отвечает за возможное локальное нарушение четности в CVE подобно магнитному полю в CME.

В.Воронюк

27 октября 2017

Определения

Релятивистское определение температурной вортисити

$$\varpi_{\mu\nu} = \frac{1}{2} (\partial_{\nu}\beta_{\mu} - \partial_{\mu}\beta_{\nu}) \qquad \beta_{\nu} = \frac{u_{\nu}}{T}$$

Вектор локальной поляризации из-за спин-орбитального взаимодействия

F. Becattini et al. Eur. Phys. J. C75, no. 9, 406 (2015) Спиновый вектор

$$S^{\mu}(x,p) = -\frac{s(s+1)}{6m} (1 \pm n(x,p)) \varepsilon^{\mu\nu\lambda\delta} \varpi_{\nu\lambda} p_{\delta}$$

- s спин, p_{δ} 4е импульс частицы
 - Термодинамическое равновесие
 - Механизм не конкретизируется

Поляризация Λ

$$P = 2\frac{\mathbf{S}^* \cdot \mathbf{L}}{|L|}$$

 ${f S}^*$ спиновый вектор в системе покоя $\Lambda,\,{f L}$ – вектор углового момента системы.

27 октября 2017

Parton-Hadron-String-Dynamics model

- Обобщенные транспортные уравнения вне массовой поверхности основанные на уравнениях Каданова-Бейма .
- Динамика квазичастиц вне массовой поверхности: характеристики квазичастиц модифицируются в среде
- Модель DQPM: спектральные функции, массы, ширины, среднеполевые потенциалы для партонов (фит решеточной КХД)
- Фазовый переход: кроссовер, $\varepsilon_{cr} > 0.5$ ГэВ/фм 3 .
- Динамическая адронизация

Модель хорошо описывает экспериментальные данные в широкой области энергий.

W.Cassing, E.Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W.Cassing, EPJ ST 168 (2009) 3

Chiral symmetry restoration in the hadronic phase

The strangeness enhancement seen experimentally at FAIR/NICA energies probably involves the approximate restoration of chiral symmetry in the hadronic phase.

W.Cassing, A.Palmese, P.Moreau, E.L.Bratkovskaya – arXiv:1510.04120 [PRC]

Поле скоростей. ЧАСТИЦЫ ightarrow СРЕДА

Численно поле скоростей можно определить с помощью некоторой размазывающей функции $\Phi(x, x_i)$, где x координата среды, а x_i координата iй частицы.

Wei-Tian Deng and Xu-Guang Huang, Phys. Rev. C 93, 064907 (2016)

🔀 Скорость потока частиц

$$v^{a}(x) = \frac{1}{\sum_{i} \Phi(x, x_{i})} \sum_{i} \frac{p_{i}^{a}}{p_{i}^{0}} \Phi(x, x_{i}),$$

🔀 Скорость потока энергии

$$v^{a}(x) = \frac{\sum_{i} p_{i}^{a} \Phi(x, x_{i})}{\sum_{i} [p_{i}^{0} + (p_{i}^{a})^{2} / p_{i}^{0}] \Phi(x, x_{i})},$$

Корость ячейки

$$v^{a}(x) = \frac{\sum_{i} p_{i}^{a} \Phi(x, x_{i})}{\sum_{i} p_{i}^{0} \Phi(x, x_{i})},$$

В.Воронюк

27 октября 2017

ЧАСТИЦЫ -> СРЕДА

Поток частиц

$$J^{\mu}(x) = \left(\sum_{i} \Phi(x, x_{i}), \sum_{i} \frac{\mathbf{p}_{i}}{p_{i}^{0}} \Phi(x, x_{i})\right)$$

Поле скоростей

$$\mathbf{v}(\mathbf{r}) = \frac{\mathbf{J}(\mathbf{r})}{J_0(\mathbf{r})} \qquad u^{\mu}(\mathbf{r}) = \frac{J^{\mu}(\mathbf{r})}{\sqrt{J_{\nu}(\mathbf{r})J^{\nu}(\mathbf{r})}}$$

Разный выбор $\Phi(x, x_i)$ может приводить к разному полю.

イロト イロト イヨト イヨト 三日

Метод частица в ячейке ("Particle in Cell" или "Claud in Cell")

Сеточная плотность

$$J_a = \sum_i \ J(\mathbf{r}_i) \ W(\mathbf{r}_i - \mathbf{R}_a),$$

для узла в точке \mathbf{R}_a , где сумма ведется по всем частицам i, W – весовая функция

Аппроксимация

$$J(\mathbf{r}) = \sum_{a} J_{a} W(\mathbf{r} - \mathbf{R}_{a}),$$

где сумма ведется по узлам.

Весовой функция *W* выбрана квадратичная – квадратичный сплайн. Каждый раз используется 3x3x3 узла.

В.Воронюк

27 октября 2017

Метод частица в ячейке ("Particle in Cell" или "Claud in Cell")

Свойства метода + следствия квадратичного сплайна

- Единая весовая функция для перехода на узлы решетки и восстановления значений.
- № Уширение точечных частиц (r=0.8fm).
- Непрерывное восстановление между узлами.
- **К** Первая производная непрерывная
- ₭ Вычисление производных не требует разностной схемы (аналитическая производная весовой функции)

В.Воронюк

13 из 17

Кинематическая и температурная вортисити

В.Воронюк

27 октября 2017

14 из 17

intro def PHSD EOS Vorticity summary

Рождение гиперонов

Число Λ долетевших до детектора в зависимости от времени рождения.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

intro def PHSD EOS Vorticity summary

 $S_y \sim \varpi_{xz}$

Распределение по наиболее существенной компоненте. Остальные компоненты симметричные.

В.Воронюк

27 октября 2017

16 из 17

イロト イポト イヨト イヨト

Поляризация

Предварительные результаты: Зависимость поляризации от выбора времени фризаута.

intro def PHSD EOS Vortícity summary Заключение

- Вортисити сосредоточено в основном в пограничной области фаербола.
- 🔀 Поляризация зависит от выбора времени фризаута.
- № Разница между поляризацией частиц и античастиц маленькая и противоположна экспериментально найденной. (Магнитное поле?)
- Распады более тяжелых гиперонов приводят к уменьшению наблюдаемой поляризации.
- В области энергии NICA происходит усиление поляризации ∧-гиперонов, а также усиление выхода странных частиц, что дает преимущество по изучению этих эффектов.

Спасибо за внимание.