Various corners of QCD and 2 color QCD phase diagrams

Roman N. Zhokhov IZMIRAN, IHEP

Infinite and Finite Nuclear Matter (INFINUM-2023) 27 February - 3 March 2023 Dubna

K.G. Klimenko, IHEP

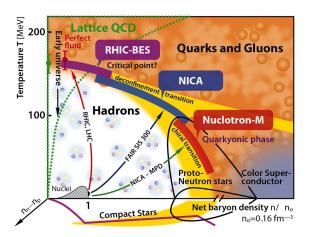
T.G. Khunjua, University of Georgia, MSU

The work is supported by

➤ Russian Science Foundation (RSF) under grant number 19-72-00077

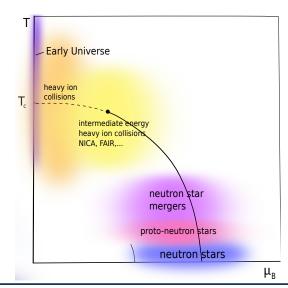
► Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики и математики



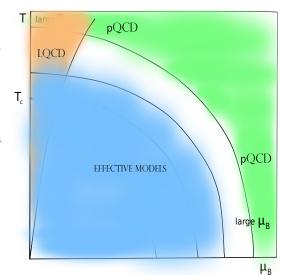
QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions
- neutron stars
- ▶ proto- neutron stars
- ► neutron star mergers



Methods of dealing with QCD

- ▶ Perturbative QCD
- ► First principle calculation
 lattice QCD
- ► Effective models
- ► DSE, FRG
- **....**



NJL model can be considered as **effective model for QCD**.

the model is **nonrenormalizable** Valid up to $E < \Lambda \approx 1 \text{ GeV}$

 $\mu, T < 600 \, {\rm MeV}$

Parameters G, Λ , m_0

chiral limit $m_0 = 0$

in many cases chiral limit is a very good approximation

dof- quarks
no gluons only four-fermion interaction
attractive feature — dynamical CSB
the main drawback – lack of confinement (PNJL)

▶ QCD phase diagram
 with different chemical potentials
 and matter content including chiral
 imbalance

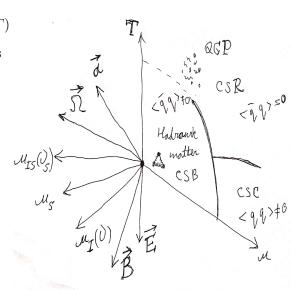
 QC₂D phase diagram and diquark condensation phenomenon
 with different chemical potentials, including μ₅ ▶ QCD phase diagram and color superconductivity phenomenon with different chemical potentials and matter content including chiral imbalance

More than just QCD at (μ, T)

- more chemical potentials μ_i
- (see talk by A. N. Tawfik)

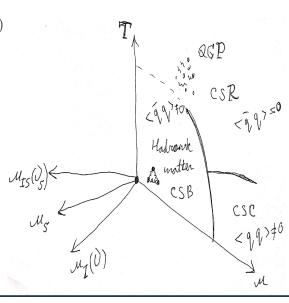
magnetic fields

- rotation of the system $\vec{\Omega}$ A. Roenko, D. Sychev and
 - G. Prokhorov
- ightharpoonup acceleration \vec{a} G. Prokhorov
- ► finite size effects (finite volume and boundary conditions)



More than just QCD at (μ, T)

- ▶ more chemical potentials μ_i
- ► magnetic fields
 (see talk by A. N. Tawfik)
- rotation of the system Ω
 A. Roenko, D. Sychev and
 G. Prokhorov
- \blacktriangleright acceleration \vec{a} G. Prokhorov
- ► finite size effects (finite volume and boundary



Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3q = \nu\left(\bar{q}\gamma^0\tau_3q\right)$$

$$n_I = n_u - n_d \iff \mu_I = \mu_u - \mu_d$$

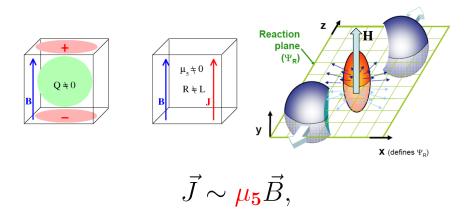
chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

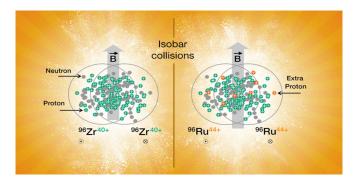
The corresponding term in the Lagrangian is

$$\mu_5 \bar{q} \gamma^0 \gamma^5 q$$

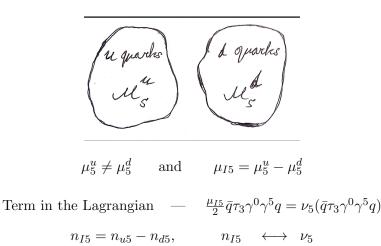


A. Vilenkin, PhysRevD.22.3080,

K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033



The first blind analysis results isoba run have been recently released by the STAR Collaboration. Under the pre-defined assumption of identical background in RuRu and ZrZr, the results are **inconsistent with the presence of CME**, as well as with all existing theoretical models (whether including CME or not). However the **observed difference of backgrounds** must be taken into account **before any physical conclusion is drawn**.

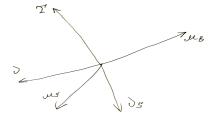


► Chiral isospin imbalance and chiral imbalance μ_{I5} and μ_{5} can be generated in parallel magnetic and electric fileds $\vec{E} \parallel \vec{B}$

- ► Chiral imbalance could appear in dense matter
 - ► Chiral separation effect (Thanks for the idea to Igor Shovkovy)
 - ► Chiral vortical effect

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$



- ▶ Duality between CSB and PC has been found in effective model of QCD, 3 color, without diquark condensation phenomenon
- ▶ Additional dualities have been found in QC₂D phase diagram. There has been shown that the phase diagram have a highly symmetric structure
- ▶ QCD phase diagram has been studied and color superconductivity phenomenon and interesting qualitative features has been revealed

Recall that in NJL model without color superconductivity phenomenon there have been found dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

Dualities

Dualities

21

Chiral symmetry breaking \iff pion condensation

Isospin imbalance \iff Chiral imbalance

The TDP

$$\Omega(T, \mu, \mu_i, ..., \langle \bar{q}q \rangle, ...)$$

The TDP

$$\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...) \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$$

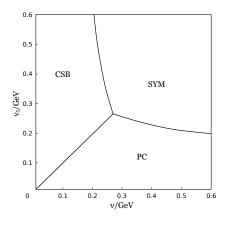
$$\Omega(T, \mu, \mu_i, ..., \langle \bar{q}q \rangle, ...)$$
 $\Omega(T, \mu, \nu, \nu_5, ..., M, \pi, ...)$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \nu, \nu_5)$$

$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

$$\Omega(M,\pi,\nu,\nu_5) = \Omega(\pi,M,\nu_5,\nu)$$



$$\mathcal{D}: M \longleftrightarrow \pi, \quad \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

Figure: NJL model results

A number of papers predicted **anticatalysis** (T_c decrease with μ_5) of dynamical chiral symmetry breaking

A number of papers predicted **catalysis** (T_c increase with μ_5) of dynamical chiral symmetry breaking

lattice results show the **catalysis**(ITEP lattice group, V. Braguta, A. Kotov, et al)
But unphysically large pion mass

Duality \Rightarrow catalysis of chiral symmetry beaking

Inhomogeneous phases (case)

Homogeneous case

$$\langle \sigma(x) \rangle$$
 and $\langle \pi_a(x) \rangle$
 $\langle \sigma(x) \rangle = M, \quad \langle \pi_+(x) \rangle = \pi, \quad \langle \pi_3(x) \rangle = 0.$

- exchange axis ν to the axis ν_5 ,
- ▶ rename the phases ICSB \leftrightarrow ICPC, CSB \leftrightarrow CPC, and NQM phase stays intact here

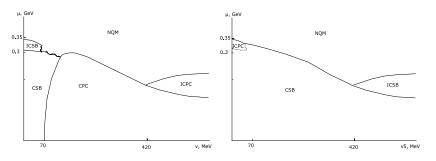


Figure: (ν, μ) -phase diagram

Figure: (ν_5, μ) -phase diagram

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are a lot similarities:

similar phase transitions:
 confinement/deconfinement, chiral symmetry
 breaking/restoration at large T and μ

► A lot of physical quantities coincide with some accuracy

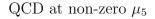
Critical temperature, shear viscosity etc.

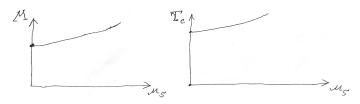
There is no sign problem in SU(2) case

$$(Det(D(\mu)))^{\dagger} = Det(D(\mu))$$

and lattice simulations at non-zero baryon density are possible

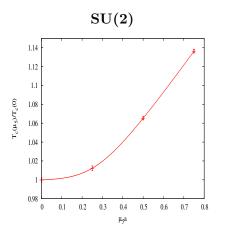
It is a great playground for studying dense matter



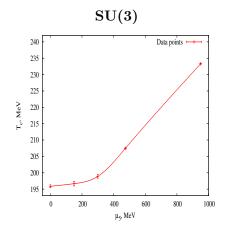


catalysis of CSB by chiral imbalance:

- ▶ increase of $\langle \bar{q}q \rangle$ as μ_5 increases
- ▶ increase of critical temperature T_c of chiral phase transition (crossover) as μ_5 increases



V. Braguta, A. Kotov et al, JHEP 1506, 094 (2015), PoS LATTICE 2014, 235 (2015)



V. Braguta, A. Kotov et al, Phys. Rev. D 93, 034509 (2016), arXiv:1512.05873 [hep-lat]

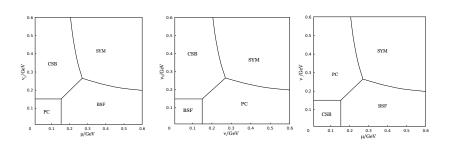
Phase diagram of QC₂D

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle,$$
 CSB phase: $M \neq 0$,

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle,$$
 PC phase: $\pi_1 \neq 0$,

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle,$$
 BSF phase: $\Delta \neq 0$.



J. Andersen, T. Brauner, D. T. Son, M. Stephanov, J. Kogut, ...

 $PC \longleftrightarrow BSF$

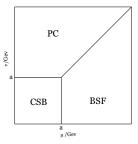
(b)
$$\mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1, \quad \text{PC} \longleftrightarrow \text{CSB}$$

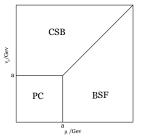
(a) $\mathcal{D}_1: \quad \mu \longleftrightarrow \nu, \quad \pi_1 \longleftrightarrow |\Delta|,$

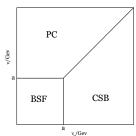
(c)
$$\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow |\Delta|, \quad \text{CSB} \longleftrightarrow \text{BSF}$$

Each chemical potential is connected in one-to-one correspondence with some phenomenon (condensation)

- ightharpoonup Baryon density $\mu \iff$ diquark condensation
- ▶ Isospin imbalance $\nu \iff$ pion condensation
- ightharpoonup Chiral imbalance $\nu_5 \iff$ chiral symmetry breaking



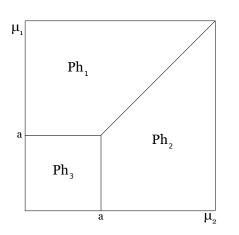


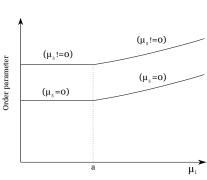


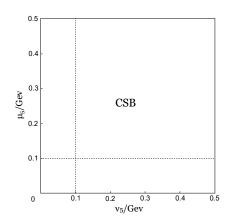
$$\mu \longrightarrow BSF$$
,

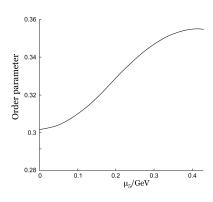
$$\nu \longrightarrow PC$$
,

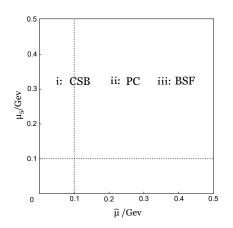
$$\nu_5 \longrightarrow \text{CSB}$$

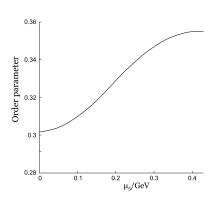


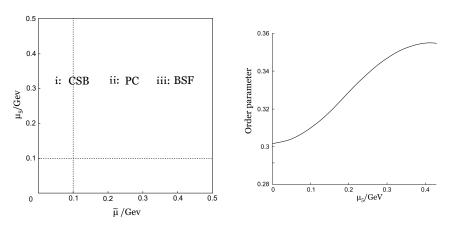








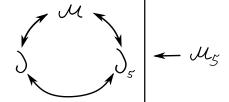


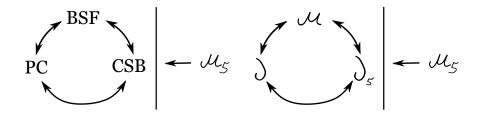


Chameleon nature of chiral imbalance μ_5

 μ_5 mimics other chemical potentials μ , ν , ν_5

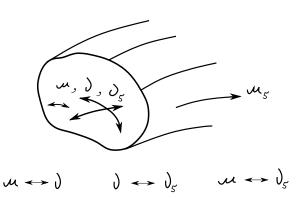
Chiral imbalance μ_5 does not participate in dual transformations

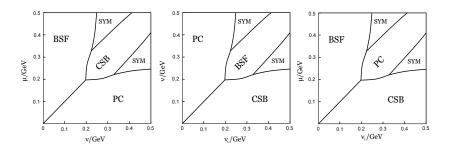




Chiral imbalance μ_5 does not participate in dual transformations

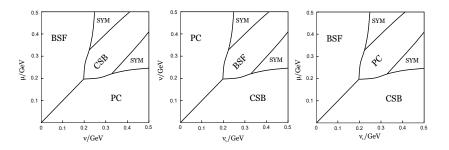
The phase diagram is foliation of dually connected cross-section of (μ, ν, ν_5) along the μ_5 direction





All phase diagrams are dually connected

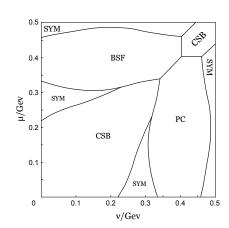
Phase structure in the large values regime



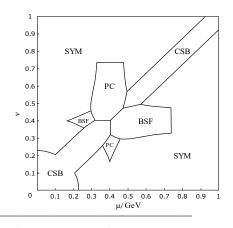
Chiral imbalance μ_5 could universally trigger all the phenomena

Chiral imbalance μ_5 leads to several rather peculiar phases in the system, e. g. the **diquark** condensation in the region of the phase diagram at $\mu = 0$

It was known that μ_5 leads to pion condensation in dense quark matter with zero $\nu=0$ in SU(3) case and in SU(2) as well

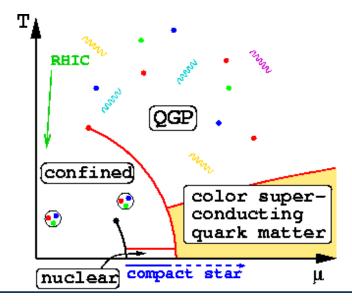


- ► PC_d phase has been predicted without possibility of diquark condensation
- ightharpoonup Diquark condensation can take over the PC_d phase
- In two colour case diquark condensation is in a sense even stronger than in three colour case and starts from $\mu > 0$



 PC_d phase is unaffected by BSF phase in two color case. Maybe one can infer that it is the case also for 3 color QCD

Phase diagram of QCD and color superconductivity at non-zero chiral imbalance



The Lagrangian of three color NJL model

$$L = \bar{q} \Big[\gamma^{\nu} i \partial_{\nu} - m \Big] q + G \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 \Big] +$$

$$+ H \sum_{A=2,5,7} [\bar{q}^c i\gamma^5 \tau_2 \lambda_A q] [\bar{q}i\gamma^5 \tau_2 \lambda_A q^c]$$

$$\mathcal{L} = \bar{q} \left[\gamma^{\nu} i \partial_{\nu} + \mathcal{M} \gamma^{0} - \sigma - m - i \gamma^{5} \vec{\pi} \vec{\tau} \right] q - \frac{1}{4G} \left[\sigma \sigma + \vec{\pi}^{2} \right]$$
$$- \frac{1}{4H} \Delta_{A}^{*} \Delta_{A} - \frac{\Delta_{A}^{*}}{2} \left[\overline{q^{c}} i \gamma^{5} \tau_{2} \lambda_{A} q \right] - \frac{\Delta_{A'}}{2} \left[\overline{q} i \gamma^{5} \tau_{2} \lambda_{A'} q^{c} \right]$$

the equations of motion for bosonic fields, which take the form

$$\sigma(x) = -2G(\bar{q}q), \quad \pi_a(x) = -2G(\bar{q}i\gamma^5\tau_a q),$$

$$\Delta_A(x) = -2H(\bar{q}^c i\gamma^5\tau_2\lambda_A q), \quad \Delta_A^*(x) = -2H(\bar{q}i\gamma^5\tau_2\lambda_A q^c)$$

the mesonic fields $\sigma(x)$, $\pi_a(x)$ are real quantities, i. e. $(\sigma(x))^\dagger = \sigma(x)$, $(\pi_a(x))^\dagger = \pi_a(x)$, but all diquark fields $\Delta_A(x)$ are complex scalars, so $(\Delta_A(x))^\dagger = \Delta_A^*(x)$. Clearly, the real $\sigma(x)$ and $\pi_a(x)$ fields are color singlets, whereas scalar diquarks $\Delta_A(x)$ form a color antitriplet $\bar{3}_c$ of the SU(3)_c group. Note that the auxiliary bosonic field $\pi_3(x)$ corresponds to real $\pi^0(x)$ meson, whereas the physical $\pi^\pm(x)$ -meson fields are the following combinations of the composite fields (??), $\pi^\pm(x) = (\pi_1(x) \mp i\pi_2(x))/\sqrt{2}$. If some of the scalar diquark fields have a nonzero ground state expectation value, i. e. $\langle \Delta_A(x) \rangle \neq 0$, the color symmetry of the model is spontaneously broken down.

the Lagrangian and the effective action are invariant under the color $SU(3)_c$ group, hence the TDP depends on the combination

$$\Delta_2 \Delta_2^* + \Delta_5 \Delta_5^* + \Delta_7 \Delta_7^* \equiv \Delta^2,$$

where Δ is a real quantity.

There are only three order parameters

$$M = \langle \sigma(x) \rangle = -2G \langle \bar{q}q \rangle, \quad \pi = \langle \pi_1(x) \rangle = -2G \langle \bar{q}i\gamma^5 \tau_1 q \rangle,$$

$$\Delta = \langle \Delta(x) \rangle = -2H \langle \overline{q^c} i \gamma^5 \tau_2 \lambda_2 q \rangle$$

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle \neq 0,$$

$$\pi = \langle \pi_1(x) \rangle = \langle \bar{q} \gamma^5 \tau_1 q \rangle \neq 0,$$

PC phase:
$$\pi_1 \neq 0$$

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle \neq 0,$$

$$\neq 0$$
, CSC phase: $\Delta \neq 0$

Three color NJL model and diquark-diquark channel 56

$$m_{\pi}, f_{\pi}, \langle \overline{q}q \rangle \longrightarrow \text{quark-antiquark coupling } G$$

H is not precisely determined

If the quark-antiquark interaction has been constrained empirically, the most natural solution is to determine the quark-quark coupling constants empirically, too. Unfortunately, the analog to the meson spectrum would be a diquark spectrum, which of course does not exist in nature

Three color NJL model and diquark-diquark channel 57

The most natural fit is

$$H = \frac{3}{4}G = 0.75G$$

- ▶ from Fiertz transform
- ▶ or from reasonable value of condensate

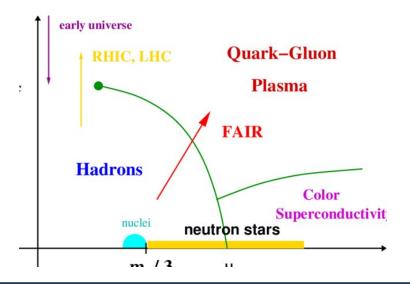
But we can use 0 < H < G

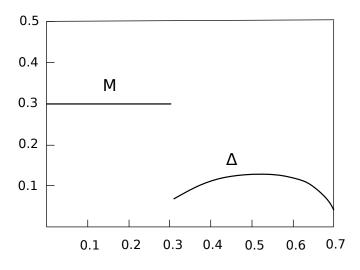
Three color NJL model and diquark-diquark channel 58

If we one consider unphysical twice as strong diquark channel

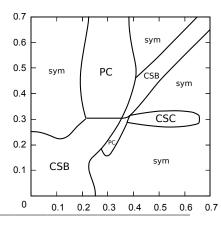
$$H = \frac{3}{2}G = 1.5G$$

It will be very instructive later

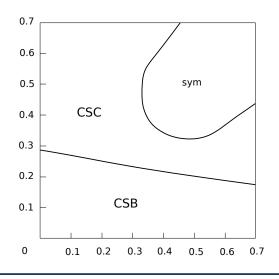




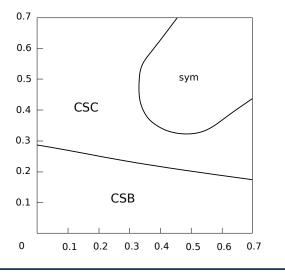
- ▶ PC_d phase at non-zero ν_5 has been predicted without possibility of diquark condensation
- ► Diquark condensation could take over the PC_d phase
- $ightharpoonup PC_d$ phase is unaffected by CSB phase in two color case.



 PC_d phase is unaffected by BSF phase in three color case.



Chiral imbalance μ_5 facilitates the generation of color superconductivity



Chiral imbalance μ_5 facilitates the generation of color superconductivity

Two regularization schemes have been used but further clarification is required

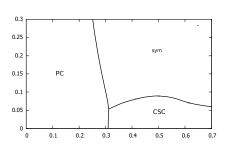


Figure: $\nu_5 = 0$

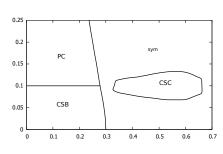
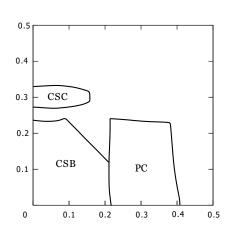


Figure: $\nu_5 = 0.1$

Chiral imbalance μ_5 leads to the **diquark condensation** in the region of the phase diagram at $\mu = 0$ in three color case



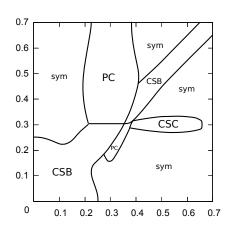
Qualitative dual properties

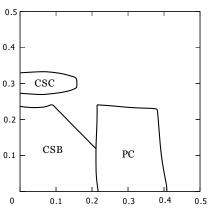
with color superconductivity phenomenon

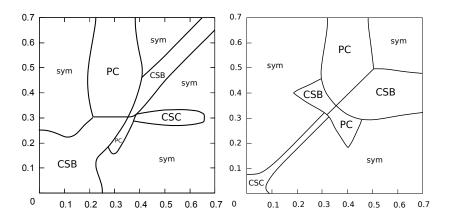
in three color case

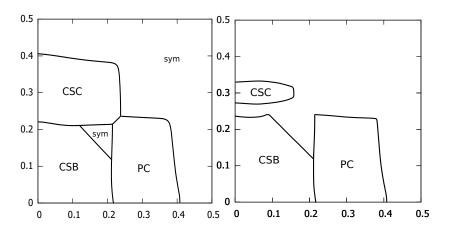
One can consider two regimes

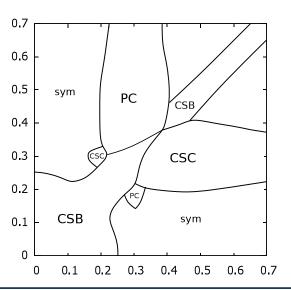
- ▶ physical $H = \frac{3}{4}G = 0.75G$ or around
- ▶ unphysical $H = \frac{3}{4}G = 1.5G$

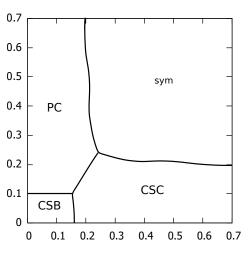












The TDP projections have the following structure

$$F_1(M, \mu_i) = f(M, \mu_i)$$

$$F_2(\pi, \mu_i) = \mathcal{D}_3 f(\pi, \mu_i) = \mathcal{D}_1 F_3(\pi, \mu_i) + \bar{g}(T, \mu_i)$$

$$F_3(\Delta, \mu_i) = \mathcal{D}_2 F_1(\Delta, \mu_i) + \bar{f}(\mu_i)$$

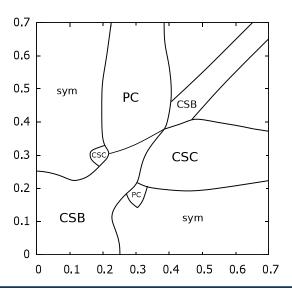
$$= \mathcal{D}_1\big(\mathcal{D}_3 f(M,\mu_i)\big) + \bar{f}_1(T,\mu_i)$$

Gap equations are dual with respect to each other so the condensates

$$\frac{\partial F_1\left(M,\mu_i\right)}{\partial M} = 0$$

$$\frac{\partial F_2\left(\pi,\mu_i\right)}{\partial \pi} = 0$$

$$\frac{\partial F_3\left(\Delta,\mu_i\right)}{\partial \Delta} = 0$$



Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the mean field approximation

Dualities are connected with Pauli-Gursey group

Dualities were found in

- In the framework of NJL model beyond mean field

- In QC_2D non-pertubartively (at the level of Lagrangian)

Duality \mathcal{D} is a remnant of chiral symmetry

Duality was found in

- ▶ In the framework of NJL model beyond mean field or at all orders of N_c approximation
- ► In QCD non-pertubartively (at the level of Lagrangian)

- $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram was studied in two color color case
- ► It was shown that there exist dualities in QCD and QC₂D

 Richer structure of Dualities in the two colour case
- ► There have been shown ideas how dualities can be used

 Duality is not just entertaining mathematical property but
 an instrument with very high predictivity power
- ▶ Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality has been shown non-perturbarively in QCD