QUASI-DEUTERON CLUSTERS IN THE ¹²C AND SHORT-RANGE NN CORRELATIONS IN THE REACTION ${}^{12}C+p \rightarrow {}^{10}A+pp+N$

Yu.N. UZIKOV (DLNP, JINR)

- Cold dense baryonic matter in nuclei
- ${}^{12}C(p,pd){}^{10}B$ and p<pn> \rightarrow dp, pd \rightarrow {pp}_sn
- Elements of formalism for $p+{}^{12}C \rightarrow p+p+N+{}^{10}B (BM@N)$
- SRC c.m. momentum distribution and pp/pn ratio
- ISI@ FSI
- Conclusion

♦ Dubna, 1957, L.S. Azhgirey,..., M.G. Mesheryakov et al. ZHETF, 33 p+¹²C → d+X at 670 MeV:

quasi-elastic knock-out of fast deuteron clusters:
D.I. Blokhintsev (1957) - fluctuations of nuclear density;
fluctons (6q) in nuclei - A.V. Efremov (1976);

SRC –Short Range Correlations **M. Strikman, L. Frankfurt (1978)** NN-pair with almost zero c.m. momentum but large (equal) internal momenta q_1 =- q_2 ; at short distances $r_{NN} < 0.5$ fm with high relative momentum $q > 1/r_{NN} = 0.4$ GeV/c; Repulsive NN-core \rightarrow high-momentum part of the w.f. of NN pair

- ♦ A.M. Baldin, Cumulative effect (1971).
- Search for high-momentum components of the nuclear wave functions

- Intensive study of SRC in nuclei during last one-two decades using mainly electron beams (e,ep), (e,epp). The Main Results:
 - * High-momentum part of the nucleon momentum distribution (q > $p_F \sim 250-300$ MeV/c) accounts for 20% nucleons .
 - * pn- SRC pairs dominate by factor of ~20 as compared to pp and nn due to the tensor forces.
 - * Factorization at high q: $n(p_1, p_2) = n^A_{c.m.}(k_{cm})n_{rel}(q)$
 - * SRC are connected with neutrino-nucleus interaction, neutron stars structure, modification of the bound nucleon structure (**EMC effect**).

Cioffi degli Atti, Phys. Rep. 590 (2015) 1 O. Hen et al. Rev. Mod. Phys. 89 (2017) 045002.

M.Duer et al. PRL 122 (2019) 172502 (CLAS Collabotration)

Project of BM@N to study SRC in JINR with 4=GeV/c /nucleon beam of ¹²C and proton target in Inverse kinematics . Talk by Maria Patsyuk today

SRC@BMN proposal http://bmnshift.jinr.ru/wiki/doku.pho

M. Patsyuk et al., Nature Phys. 17 (2021) 693; arXiv:2102.02626 [nucl-ex]

12C(p,2p)11B (g.s.), shell model is OK !

12C(p,2pN)10A, SCR: 10B 23events (pn); 10Be – 2 event (pp)

<u>CONCLUSION</u>: unperturbed by ISI@FSI distributions are measured

Quasi-elastic knockout of fast deuteron clusters ${}^{12}C(p,pd){}^{10}B$ and hard $pd \rightarrow dp$

Рис. 5.6: Рис.3. Механизмы процесса $p < NN > \rightarrow Nd$, для которых выполняется соотношение $d\sigma(p < np >_{T=0} \rightarrow pd) = 9d\sigma(p < np >_{T=1} \rightarrow pd)$.

M.A.Zhusupov, Yu.N.U. PEPAN 18 (1987) 323

$$p + \langle np \rangle_{T=0} \rightarrow p + d,$$
$$p + \langle np \rangle_{T=1} \rightarrow p + d,$$
$$p + \langle nn \rangle_{T=1} \rightarrow n + d.$$

 $R = d\sigma(p, nd)/d\sigma(p, pd)$

Таблица 5.3.2. Отношение дифференциальных сечений

г												
		События										
	Ядро-	"низкоэне	ергетичес	кие"	"высокоэнергетические"							
	мишень	эксп.	Teo	рия	эксп.	Теория						
			$R_0 = 9$	$R_0 = 1$		$R_0 = 9$	$R_0 = 1$					
	^{7}Li	$6,1\pm0,9$	13,7	80,0	$9,1\pm1,5$	6,1	42,8					
	^{6}Li	$0,30\pm0,16$	0	0	$8, 1 \pm 1, 5$	$6,\!9$	$48,\! 6$					

 $[d\sigma(p,nd)/d\sigma(p,pd)]10^2$

D. Albrecht et al. Nucl. Phys. A 322 (1979) 525; exp. ^{6,7}Li(p,nd) 670 MeV

O. Imambekov, Yu.N. U., Izv. Akad. Nauk SSSR, Ser. Fiz., 51 (1987) 947- (theor. model)

M.A.Zhusupov, O.Imambekov, Yu.N.U. Izv.AN SSSR (1986)

FSI- strong absorption

Fig. 1. The pole mechanisms of the reaction A(p, 2pN)A - 2.

SRC from ab initio quantum Monte Carlo calculations

R.Cruz-Torres et al. Nature Phys. 17 (2021) 306 (and references therein)

NN: =AV18+UX, AV4'+UIX, N²LO, NV2+3+Ia ; Generalized Contact Formalizm

Factorization at small r or high q:

$$\begin{split} \rho^{A}_{\alpha,NN}(R,r) &= C^{A}_{\alpha,NN}(R) \times |\varphi^{\alpha}_{NN}(r)|^{2}, \\ n^{A}_{\alpha,NN}(Q,q) &= \tilde{C}^{A}_{\alpha,NN}(Q) \times |\tilde{\varphi}^{\alpha}_{NN}(q)|^{2}, \end{split}$$

Nuclear contact coefficients:

$$\begin{array}{ll} C^{A}_{\alpha,NN} & \equiv \int \, \mathrm{d}\mathbf{R} \, \, \mathrm{C}^{A}_{\alpha,\mathrm{NN}}(\mathrm{R}), \\ \tilde{C}^{A}_{\alpha,NN} & \equiv \frac{1}{\left(2\pi\right)^{3}} \int \, \mathrm{d}\mathbf{Q} \, \, \mathrm{C}^{A}_{\alpha,\mathrm{NN}}(\mathrm{Q}), \end{array}$$

"NN models with very different short-range physics all lead to the same contact term ratios A/d ... Relative abundance of SRC pairs in nuclei is a long-range (that is mean-field) quantity that is insensitive the shortdistance nature of the nuclear force"

Thus, at the first step, one may apply a shell model (h.o.TISM=TИMO) with NN-correlators for the SRC analysis like it was done for the ¹²C(p,pd)B,

R.Cruz-Torres et al., Nature Phys. 17 (2021) 306

__Matrix element _____

$$M_{fi} = M(A \to B + \langle NN \rangle) \frac{1}{p_{NN}^2 - M_{NN}^2 + i\varepsilon} M(p \langle NN \rangle \to ppN),$$

$$d\sigma = (2\pi)^4 \delta^4 (P_i - P_f) \frac{1}{4I} |M_{fi}|^2 \Pi_{j=1}^n \frac{d^3 p_j}{2E_j (2\pi)^3}$$

In the rest frame of A:

Yu.N. U., Izv. RAN. Ser. Fiz. 84 (2020) 580

Spectroscopic factors within the translationally-invariant shell model (TISM)

/For future: ab initio microscopic calculations of A=12 system/

$$S^{x}{}_{A} = \left(\frac{A}{x}\right)^{1/2} < \psi_{A} |\psi_{B}\psi_{\nu\Lambda}(\mathbf{R}_{A-x} - \mathbf{R}_{x})\psi_{x} > 0$$

Oscillator rule:

$$\psi_A^{TISM} = |AN[f](\lambda\mu)\alpha LSTJMM_T >$$

$$N_A - N_B = N_x + \nu$$

Mixing shell-model configurations:

$$\psi_{J,T}^{A} = \sum_{[f]LS} \alpha_{[f]LS}^{A,JT} |AN[f](\lambda\mu)\alpha LSTJMM_{T} >$$

$$|AN_A\alpha\rangle = \sum_{\beta\gamma\Lambda M_\Lambda N_B N_x\nu} \langle AN_A\alpha | A - xN_B\beta, \nu\Lambda M_\Lambda, xN_x\gamma \rangle |BN_B\beta\rangle |xN_x\gamma\rangle |\nu\Lambda M_\Lambda\rangle.$$

- Matrix element for $p + {}^{12}C \rightarrow p + p + N + {}^{10}B$ -----

$$M_{fi}(pA \to ppNB) = \left(\frac{A}{2}\right)^{1/2} \sum_{M_{J_d}, \bar{J}, \bar{M}, M_{\Lambda}} \sum_{\alpha_i, \alpha_f, N, \Lambda, \mathcal{L}} \alpha_i^{AJ_i T_i} \alpha_f^{A-2J_f T_f}$$

$$< A\alpha_i | A - 2\alpha_f, N\Lambda; d' > (\Lambda M_{\Lambda} J_{d'} M_{J_{d'}} | \bar{J}\bar{M}) (J_f M_{J_f} \bar{J}\bar{M} | J_i M_i)$$

$$(T_f M_{T_f} T_{d'} M_{T_{d'}} | T_i M_{T_i}) U (\Lambda L_{d'} \bar{J} S_{d'}; \mathcal{L} J_{d'}) \begin{cases} L_f & S_f & J_f \\ \mathcal{L} & S_{d'} & \bar{J} \\ L_i & S_i & J_i \end{cases}$$

$$[(2L_i + 1)(2S_i + 1)(2J_f + 1)(2\bar{J} + 1)]^{1/2} \Psi_{N\Lambda M_{\Lambda}}^{dist}(\mathbf{k}_B)$$

$$\times < \mathbf{p}_1 \sigma_1, \mathbf{p}_2 \sigma_2, \mathbf{p}_r \sigma_r | \hat{M}(p < NN > \to p_1 p_2 p_r) | \mathbf{p} \sigma_p, -\mathbf{k}_B \Psi_{NN} >$$

¹²C: $L_i = S_i = J_i = 0, T_i = 0; |10B\rangle = |s^4p^6\rangle$

- Matrix element of the $p + \langle NN \rangle \rightarrow p + p + N$ ———

In the Light front dynamics

$$\begin{split} M_{fi}^{LFD}(p < NN > \to p_1 p_2) &= \frac{\Psi_d^{LFD}(\mathbf{k}_{\perp}, \xi)}{1 - \xi} M_{fi}(pN \to p_1 p_2), \\ & \mathbf{p} & \boldsymbol{\xi} = \frac{p_r^+}{p_r^+ + p_N^+}, \ \mathbf{q}_{\perp} = (1 - \xi) \mathbf{p}_{r\perp} - \xi \mathbf{p}_{N\perp}, \\ & M_{pN}^2 = \frac{m_p^2 + \mathbf{p}_N^2}{\xi(1 - \xi)}. \\ & \mathbf{M}_{pN}^2 = \frac{m_p^2 + \mathbf{p}_N^2}{\xi(1 - \xi)}. \end{split}$$

Yu.N. U., EPJ Web Conf. 222 (2019) 03027

- Momentum distribution in $\langle NN \rangle - {}^{10}B_5$ $N\Lambda = 20,22 \text{ for } |s^4p^6 \rangle$ $R_{20}^2 = \frac{6}{\sqrt{\pi} p_0^3} \Big[1 - \frac{2}{3} \Big(\frac{p}{p_0} \Big)^2 \Big]^2 exp \Big\{ - \Big(\frac{p}{p_0} \Big)^2 \Big\}, \qquad (1)$ $R_{22}^2 = \frac{16}{15\sqrt{\pi} p_0^3} \Big(\frac{p}{p_0} \Big)^4 exp \Big\{ - \Big(\frac{p}{p_0} \Big)^2 \Big\} \qquad (2)$

$$N\Lambda=00 \ {\rm for} \ |s^2p^8>$$

$$R_{00}^2 = \frac{4}{\sqrt{\pi} \, p_0^3} exp \left\{ -\left(\frac{p}{p_0}\right)^2 \right\}$$

where $p_0 = \sqrt{\mu}/r_0 = \sqrt{\mu}p_0^{h.o.}$; $\mu = \frac{m_1m_2}{m_1+m_2} = \frac{5}{3}$ – the reduced mass of the $d - {}^{10}B$ system in m_N ; r_0 is the h.o. shell model parameter; $p_0^{h.o.} = \hbar/r_0$

The <NN> c.m. distribution in mean-field model (Cioffi degli Atti, Simula, PRC, 1996)

$$\langle (\Sigma_{i=1}^{A} \vec{k}_{i})^{2} \rangle = 0, \qquad \langle k_{c.m.}^{2} \rangle = \frac{2(A-2)}{A-1} \langle k^{2} \rangle$$

$$n_{c.m.}(k_{c.m.}) = C \exp(-\alpha_{c.m.}k_{c.m.}^2)$$

$$< k_{c.m.}^2 >= 3/2\alpha_{c.m.}$$

Antisymmetrization effects are not taken into account; s-shape is assumed.

$$\alpha_{c.m.} = \frac{3(A-1)}{4(A-2)} \frac{1}{2M < T > }$$

$$T_s = \frac{3}{2} \frac{p_0^2}{2M}$$
 and $T_p = \frac{5}{2} \frac{p_0^2}{2M}$

$$\langle T \rangle = \frac{4T_s + 8T_p}{12} = \frac{13}{6} \frac{p_0^2}{2M}$$

$$p_0 = ?$$

$$\rho(r) = 2R_{00}^2(r) + 4R_{11}^2(r)$$
$$= \frac{8}{r_0^3 \sqrt{\pi}} \left[1 + \frac{4}{3} \left(\frac{r}{r_0}\right)^2 \right] \exp\left(-\frac{r^2}{r_0^2}\right),$$

Charge form factor of the ¹²C

where $r_0 = \hbar/p_0$. Then the charge form factor is

$$F(q) = \int d^3 r \rho(r) \exp\left(i\frac{A-1}{A}\mathbf{qr}\right).$$

 F_{ch} fit: $p_0=109$ MeV/c;

$$\begin{split} R_{00}^{2}(p_{cm}) &= C \exp\left\{\frac{p_{cm}^{2}}{P_{0}^{2}}\right\}; \qquad \tilde{p}_{0} = \sqrt{\frac{12}{11}}p_{0} = 113.8MeV/c, < T >= 15MeV \\ TISM: P_{0}^{2} &= \frac{5}{3} \tilde{p}_{0}^{2} \qquad P_{0} = 146.8MeV/c \\ Talmi-Moshinsky for \ ^{10}A - 2 \ relative \ motion \end{split}$$

¹²C(e,ep) ¹¹B: Data – A. Dieperink, T. Forest, Ann. Rev. Nucl. Part. Sci. 25 (1975) 1.

Fig. 2. Single nucleon momentum distribution in the reaction ${}^{12}C(e, ep){}^{11}B$ at electron beam energy 497 MeV for the p-shell (a) and s- shell nucleons (b) corresponding to transitions to the states of the residual nucleus ${}^{11}B$ with excitation energy $0 < E^* < 6.5$ MeV and $15 < E^* < 35$ MeV, respectively. The curves show the results of our calculations in the plane wave impulse

E. Cohen et. al. PRL 121 (2018) 092501

Comparison with calculations appears to show that the SRC pairs are formed from mean-field nucleons in specific quantum states.

Fig. 3. Distribution over the c.m. momentum of the SCR pair $p_{c.m.}$ in the ¹²C for the mean-field model with $\alpha_{c.m.} = 0.95 fm^2$ (full line) and the TISM wave function squared with $p_0 = 146.9$ MeV/c for the 0S-type (dashed), and 2S-type (dashed-dotted). All distributions are arbitrary normalized at $p_{c.m.} = 0$ to the same value.

J. Erő et al. / Quasi-free scattering Zero-point at q ≈180 MeV/c

J. Erő et al. / Quasi-free scattering

pp/pn ratio

$$S_{A}^{x} = {\binom{A}{2}}^{1/2} \frac{1}{\sqrt{2T+1}} PC(S,T)$$

$$|M_{fi}(A(p,2pN)B)|^{2} \propto \frac{1}{2T+1} n_{cm}(k_{c.m.}) n_{NN}(q_{rel}) |M^{pN}|^{2} [I_{pN}PC(s,T)]^{2}$$

$$R = \frac{pp}{pn} = \frac{(pp)_{S=1,T=1}}{(pn)_{S=1,T=0} + (pn)_{S=0,T=1}} = \frac{1}{2}R_{rel}$$

$$^{12}C$$
 : [444], $L_i = 0, S_i = 0, T_i = 0, J_i = 0 >$
 $PC(S = 1, T = 0) = PC(S = 0, T = 1)$

pp to pn pairs ratio of the spectroscopic factors: 1/2

GCF: Contact terms ratio C_{S=0}(pp)/C_{S=1}(pn)~ 1/14 R. Cruz-Torres, et al. Nature Phys. 17 (2021) 306; R.Weiss et al. PLB 780 (2018) 211

pp/pn ratio

M.Duer et al. (CLAS coll.) PRL 122 (2019) 172502

R_{rel}=0.06-0.07 at q_{min}=0.3 GeV/c, q_{max}=1-2 GeV/c pp/pn=0.03-0.035 R_{exp}=5% (that is 3% with account for charge-exchange in the final state)

pp and deuteron internal momentum distribution

How to take into account ISI and FSI?

Transition matrix element

$$T_{fi} = \binom{A}{x}^{1/2} \sum_{x' \ \nu\Lambda} \langle \psi_A | \psi_B \psi_{x'}, \psi_{\nu\Lambda} \rangle \Phi_{\nu\Lambda}(\mathbf{k}_B) T^{px' \to Nx}.$$

$$T^{px'\to Nx} = \langle \mathbf{k}_N \mathbf{k}_x \chi_N \psi_x | \tau(px' \to Nx) | \mathbf{k}_p, -\mathbf{k}_B \chi_p \psi_{x'} \rangle$$

$$N_A - N_B = N_x + \nu$$

 p_1

 p_3

 \mathbf{p}_{B}

ISI@FSI ELASTIC RESCATTERINGS

Feynman graphs + generalized eikonal appr. L.L. Frankfurt et al. PRC 56(1997) 2752

T-operator formalism with eikonal appr. kollinear kinematics. M.A. Zhusupov, Yu. N. Uzikov , Fiz. Elem. Chast. At. Yadr. 18(1987) 323

c)

<NN>

e)

В

p_B'

А

Feynman graphs + generalized eikonal approximation (GEA) L.L. Frankfurt et al. PRC 56(1997) 2752

$$\begin{aligned} \frac{1}{(p_1 + p_B - p_{B'})^2 - m^2 + i\varepsilon} &\cong \frac{1}{2p_{1z}} \frac{1}{p_{B'_z} - p_{B_z} + \Delta_1 + i\varepsilon};\\ \Delta_1 &= -\frac{\vec{p}_{1t}}{p_{1z}} (\vec{p}_{Bt} - \vec{p}_{B'_t}) + \frac{E_1}{p_{1z}} (E_B - E_{B'});\\ \Delta_1 &\neq 0 - > GEA \end{aligned}$$

T-operator formalism, eikonal appr.; kollinear kinematics. M.A. Zhusupov, Yu.N.U. Sov.J.Part.Nucl 18 (1987)

$$\begin{split} \Phi_{\nu\Lambda}(\mathbf{k}_B) &= \psi_{\nu\Lambda}(\mathbf{k}_B) + \frac{i}{4\pi k_{pA}} \int d^2 \mathbf{q}_p F_{pB}(\mathbf{q}_p) \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_p) + \\ &+ \frac{i}{4\pi k_{xB}} \int d^2 \mathbf{q}_x F_{xB}(\mathbf{q}_x) \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_x) + \frac{i}{4\pi k_{NB}} \int d^2 \mathbf{q}_N F_{NB}(\mathbf{q}_N) \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_N) \\ &- \frac{1}{(4\pi)^2 k_{pA}} \frac{1}{k_{NB}} \int d^2 \mathbf{q}_p \ d^2 \mathbf{q}_N F_{pB}(\mathbf{q}_p) \ F_{NB}(\mathbf{q}_N) \ \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_N - \mathbf{q}_p) - \\ &- \frac{1}{(4\pi)^2 k_{pA}} \frac{1}{k_{xB}} \int d^2 \mathbf{q}_p \ d^2 \mathbf{q}_x F_{pB}(\mathbf{q}_p) \ F_{xB}(\mathbf{q}_x) \ \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_p - \mathbf{q}_x) - \\ &- \frac{1}{(4\pi)^2 k_{xB}} \frac{1}{k_{NB}} \int d^2 \mathbf{q}_x \ d^2 \mathbf{q}_N F_{xB}(\mathbf{q}_p) \ F_{NB}(\mathbf{q}_N) \ \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_p - \mathbf{q}_N) - \\ &- \frac{1}{(4\pi)^2 k_{xB}} \frac{1}{k_{NB}} \int d^2 \mathbf{q}_x \ d^2 \mathbf{q}_N F_{xB}(\mathbf{q}_p) \ F_{NB}(\mathbf{q}_N) \ \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_p - \mathbf{q}_N) - \\ &- \frac{i}{(4\pi)^3 k_{pA}} \frac{1}{k_{NB}} \frac{1}{k_{xB}} \int d^2 \mathbf{q}_p \ d^2 \mathbf{q}_N F_{xB}(\mathbf{q}_p) \ F_{NB}(\mathbf{q}_N) \ \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_p - \mathbf{q}_N) - \\ &- \frac{i}{(4\pi)^3 k_{pA}} \frac{1}{k_{NB}} \frac{1}{k_{xB}} \int d^2 \mathbf{q}_p \ d^2 \mathbf{q}_N d^2 \mathbf{q}_p \times \\ &\times F_{pB}(\mathbf{q}_p) \ F_{NB}(\mathbf{q}_N) \ F_{xN}(\mathbf{q}_x) \ \psi_{\nu\Lambda}(\mathbf{k}_B - \mathbf{q}_N - \mathbf{q}_p - \mathbf{q}_N). \end{split}$$

Yu. U., Acta Phys. Pol. B Proc. Suppl. 14, № 4, (2021) 793.

SUMMARY

- TISM applied for the k_{c.m} distribution of <NN> clusters works quite well in the case of ¹²C(p,pd)¹⁰B reaction at separation of s⁴p⁶ and s²p⁸ states of the ¹⁰B.
- TISM allows oneto explains pp/pn ratio for SRC in ¹²C, but fails to describe data on the k_{c.m} – distribution (whereas a simple mean–field model is OK).
- ISI@FSI effects in differential cross sections of the reaction ¹²C(p,2pN)¹⁰A in kinematics of the <u>BM@N</u> SRC experiment are **not negligible**:
 suppression factor R=DWIA/PWIA ~ 0.4-0.8;
 - smooth dependence on all scattering angles and momenta except of p_B –dependence
- A study of SRC pairs in A(p,3N)B with separation of the final states of the residual nucleus and BM@N conditions will be very important.
- Is TISM it too simple for SRC?
 Further study using the ¹²C w.f. based on microscopic ab initio calculations /M.Piarulli et al.PRC 107 (2023)/ is necessary

THANK YOU FOR ATTENTION!

BUCKUP

J. Haidenbauer, Yu.N. Uzikov / Physics Letters B 562 (2003) 227-233

Mechanisms of the breakup reaction $pd \rightarrow (pp)n$. The same mechanisms are used for the reaction $pd \rightarrow dp$.

PARENTAGE COEFFICIENTS of TISM

 $< AN_i = 8[f_i](\lambda_i\mu_i)\alpha_iL_iS_iT_i|A - 2N_f[f_f](\lambda_f\mu_f)\alpha_fL_fS_fT_f, \nu\Lambda; N_xL_xS_xT_x: L_iS_iT_i > 0$

N_{j}	f	6									
$[f_f$	r]	[442]									
$(\lambda_f \mu$	$\iota_f)$	(22)									
$\nu \Lambda$	1	00				22					
$N_x I$	$N_x L_x$ 22				2		00				
$2T_f + 12S_f + 1L_f$		$^{13}D_{I}$	$^{31}D_{I}$	$^{13}D_{II}$	$^{31}D_{II}$	$^{13}D_{I}$	$^{31}D_{I}$	$^{13}D_{I}$	$T_I = {}^{31}D$	O_{II}	
PC		$\sqrt{\frac{1}{264}}$	$\sqrt{\frac{1}{264}}$	$-\sqrt{\frac{35}{792}}$	$\sqrt{\frac{35}{792}}$	$-\sqrt{\frac{3}{550}}$	$\sqrt{\frac{3}{550}}$	$-\sqrt{\frac{1}{1}}$	$\frac{7}{10}$ $\sqrt{1}$	$\frac{7}{10}$	
		6				7					8
	[4	42]		[433]		[442]		[433]		[442]	
	()	22)		(03)		(13)		(13)		(04)	
00		20		11		11		00		00	
20		00		11		00		11		00	
^{31}S	^{13}S	^{31}S	^{13}S	$^{13}D_{I}$	${}^{31}D_{I}$	$^{13}D_{II}$	$^{31}D_{II}$	$^{13}D_{I}$	$^{31}D_{I}$	$^{13}D_{II}$	$^{31}D_{II}$
$-\sqrt{\frac{2}{99}}$	$\sqrt{\frac{2}{99}}$	$-\sqrt{\frac{8}{275}}$	$\sqrt{\frac{8}{275}}$	$\sqrt{\frac{1}{55}}$	$\sqrt{\frac{9}{55}}$	$-\sqrt{\frac{21}{275}}$	$\sqrt{\frac{21}{275}}$	$\sqrt{\frac{3}{110}}$	$\sqrt{\frac{27}{110}}$	$\sqrt{\frac{3}{110}}$	$-\sqrt{\frac{3}{110}}$

Fig. 3. Distribution over the c.m. momentum of the SCR pair $p_{c.m.}$ in the ¹²C for the mean-field model with $\alpha_{c.m.} = 0.95 fm^2$ (full line) and the TISM wave function squared with $p_0 = 146.9$ MeV/c for the 0S-type (dashed), and 2S-type (dashed-dotted). All distributions are arbitrary normalized at $p_{c.m.} = 0$ to the same value.

E. Cohen et. al. PRL 121 (2018) 092501

EMC- effect and SRC

O. Hen et al. Rev. Mod. Phys. 89 (2017) 045002

FIG. 34. The slope of the EMC effect (R_{EMC} , ratio of nuclear to deuteron cross section) for $0.35 \le x_A \le 0.7$ plotted vs $a_2(A)$, the SRC scale factor (the relative probability that a nucleon belongs to an SRC *NN* pair) for a variety of nuclei. The fit parameter $a = -0.070 \pm 0.004$ is the intercept of the line constrained to pass through the deuteron (and is therefore also the negative of the slope of that line). From Hen *et al.* 2013

— Center mass motion of SRC NN pairs in nuclei –

E.O. Cohen et al. Phys.Rev.Lett. **121** (2018) 092501 Hard breakup of a pp-SRC pair in a hard two-nucleons knockout A(e, e'pp) reactions at recoil proton momentum $p_{rec} \geq 350$ MeV/c assuming factorization

$$\begin{split} d\sigma(e,e'pp) \sim n_{SRC}(\vec{p_1},\vec{p_2}) \approx n^A_{c.m.}(\vec{p_{c.m.}})n^{NN}_{rel}(\vec{p_{rel}}) \\ n^A_{c.m.}(\vec{p_{c.m.}}) \text{ is approximated by the 3-D Gaussian } g(x)g(y)g(z), \\ g(x) &= \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \\ \frac{12C}{\sigma_x} \approx \sigma_y \approx \sigma_z = (145 \pm 5)MeV/c \\ \text{i.e. } p_0 &= \sqrt{2}(145 \pm 5)\text{MeV/c} = (205 \pm 7)\text{MeV/c} \end{split}$$

$$S_A^x = \binom{A}{x}^{1/2} \sum_{\mathcal{L}\overline{J}\overline{M}} (J_B M_B \overline{J} \ \overline{M} | J_A M_A) (\Lambda M_\Lambda J_x M_x | \overline{J} \ \overline{M})$$
$$(T_B M_{T_B} T_x M_{T_x} | T_A M_{T_A}) U (\Lambda L_x J S_x; \mathcal{L} J_x)$$
$$[(2L_A + 1)(2S_A + 1(2J_B + 1)(2\overline{J} + 1)]^{1/2} \begin{cases} L_B \ S_B \ I_B \\ L \ S_x \ \overline{J} \\ L_A \ S_A \ I_A \end{cases} \end{cases}$$
$$< AN_A [f_A] (\lambda_A \mu_A) \alpha_A L_A S_A T_A |$$

 $|A - xN_B[f_B](\lambda_B\mu_B)\alpha_B L_B S_B T_B; \nu\Lambda, xN_x[f_x](\lambda_x\mu_x)\alpha_x L_x S_x T_x(\mathcal{L}): L_A S_A T_A > 0$

Theoretical model: C.Ciofi degli Atti, S.Simula, PRC 53 (1996) 1689

$$n_{cm}(p) = \left(\frac{\alpha}{\pi}\right) \exp\left[-\alpha p^2\right] \tag{3}$$

 $lpha=1~{
m fm}^2~{
m or}~p_0=\hbar/\sqrt{lpha}=197~{
m MeV/c}$

From the deuteron knock-out ${}^{12}C(p, pd){}^{10}B$ from p-shell ($|{}^{10}B >= |s^4p^6 >$) (J.Erö et al., 1981) one has $p_0 = 155 MeV/c$ (not for 1S-wave distribution in Eq.(3), but for 2S Eq.(1)!)

 $\begin{array}{l} \frac{4He}{2}: \ \alpha=2.4 \ {\rm fm}^2 \ {\rm or} \ p_0=\hbar/\sqrt{\alpha}=127.3 \ {\rm MeV/c}, \\ {\rm that} \ {\rm is \ compatible \ with} \ p_0=(144.6\pm18.2) \ {\rm MeV/c} \ {\rm from \ the \ deuteron} \\ {\rm knockout} \ {}^{12}C(p,pd)^{10}B \ {\rm from \ the \ } \alpha\mbox{-core, (J.Erö \ et \ al., \ NPA \ 372, \ 1981),} \\ |^{10}B>=s^2p^8> \end{array}$