Electromagnetic conductivity of quark-gluon plasma under extreme conditions

V.V. Braguta

JINR

2 March, 2023

Infinite and Finite Nuclear Matter-2023

In collaboration with

- N. Astrakhantsev
- M. Cardinali
- ► M. D'Elia
- ► L. Maio
- ► F. Sanfilippo
- A. Trunin
- A. Vasiliev
- A. Kotov
- A. Nikolaev

The results are presented in Phys.Rev.D 102 (2020) 5, 054516, PoS LATTICE2021 (2022) 119, PoS

LATTICE2022 (2023) 155, to be published

Motivation

"A system with a nonzero chirality responds to a magnetic field by inducing a current along the magnetic field. This is the Chiral Magnetic Effect."

[K. Fukushima, D. Kharzeev, H.J. Warringa, 2008]

Dynamical CME is manifested through electromagnetic conductivity

Motivation

$\begin{array}{l} \vec{E}, \vec{B} \\ \vec{E}, \vec{B} \\ \vec{E}, \vec{E} \\ \vec{E}, \vec$

- Manifestation of CME: rise of the conductivity with B
- Anomaly related quantum phenomenon (classically $\sigma_{\parallel}^{CME} = 0$)
- Observed in experiment (Dirac and Weyl semimetals)
 - Q. Li et al., Nature Phys. 12 (2016) 550-554
 - H. Li et al., Nat. Comm. 7, 10301 (2016)

...

Possible observation in heavy-ion collision experiments

Motivation

- Charge transport of QGP is important for dynamics of QGP
- QGP in heavy-ion collisions may have non-zero baryon density
- Baryon density introduces addition fermion states to QGP
- Baryon density might change σ significantly

Lattice studies of electromagnetic conductivity

- H. T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, and W. Soeldner, Phys. Rev. D83, 034504(2011)
- A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, and J.-I. Skullerud, Phys. Rev. Lett.111, 172001 (2013)
- G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, and J.-I. Skullerud, JHEP02, 186 (2015)
- B. B. Brandt, A. Francis, B. Jager, and H. B. Meyer, Phys. Rev. D93, 054510 (2016)
- H.-T. Ding, O. Kaczmarek, and F. Meyer, Phys. Rev. D94, 034504 (2016)
- P.V. Buividovich, D. Smith, L. von Smekal, Phys.Rev.D 102 (2020) 9, 094510

Conductivity in lattice simulations

$$\blacktriangleright J_i = \sigma_{ij} E_j$$

► Electromagnetic conductivity $\sigma_{ij} = \lim_{\omega \to 0} \frac{1}{\omega} \int_0^\infty dt \int d^3x \ e^{i\omega t} \langle [J_i(x), J_j(0)] \rangle$ $\rho_{ij} = -\frac{1}{\pi} Im G_R^{ij}(\omega, \vec{k} = 0)$ $\sigma_{ij} = \pi \lim_{\omega \to 0} \frac{1}{\omega} \rho_{ij}(\omega)$

• Analytic continuation $G_E(\omega, \vec{p}) = -G_R(i\omega, \vec{p}), \quad \omega > 0$

• On lattice we measure

$$C_{E}(\tau) = \int d^{3}x \langle J_{i}(\tau, \vec{x}) J_{j}(0, \vec{0}) \rangle$$

$$C_{E}(\tau) = \int_{0}^{\infty} d\omega \rho(\omega) \frac{ch(\frac{\omega}{2T} - \omega\tau)}{sh(\frac{\omega}{2T})}, \quad \tau \in (0, \frac{1}{T})$$

Transport coefficients in lattice simulations

- ► Calculate the correlation function $C_E(\tau)$ with good accuracy
- We have to solve the equation

$$C_{E}(\tau) = \int_{0}^{\infty} d\omega \rho(\omega) \frac{ch\left(\frac{\omega}{2T} - \omega\tau\right)}{sh\left(\frac{\omega}{2T}\right)}, \quad \tau \in \left(0, \frac{1}{T}\right)$$

- There few possibilities:
 - Fitting
 - MEM methods
 - Backus-Gibert methods

Conductivity with staggered fermions

- We account only connected diagrams
- Correlation function for staggered fermions

$$C_{ij}(\tau) = rac{1}{L_s^3} \langle J_i(\tau) J_j(\mathbf{0})
angle,$$

$$J_i(\tau) = \frac{1}{4}e\sum_f q_f \sum_{\vec{x}} \eta_i(x) \big(\bar{\Psi}_x^f U_{x,i}\Psi_{x+i}^f + \bar{\Psi}_{x+i}^f U_{x,i}^+\Psi_x^f\big)$$

Two branches of staggered correlator

$$\begin{split} C^{e}_{ij}(\tau = 2n \times a) &= \int d^{3}y \left(\langle A_{i}(\tau, \vec{y}) A_{j}(0, \vec{0}) \rangle - \langle B_{i}(\tau, \vec{y}) B_{j}(0, \vec{0}) \rangle \right) \\ C^{o}_{ij}(\tau = (2n+1) \times a) &= \int d^{3}y \left(\langle A_{i}(\tau, \vec{y}) A_{j}(0, \vec{0}) \rangle + \langle B_{i}(\tau, \vec{y}) B_{j}(0, \vec{0}) \rangle \right) \\ A_{i} &= e \sum_{f} q_{f} \bar{\psi}^{f} \gamma_{i} \psi^{f}, \quad B_{i} = e \sum_{f} q_{f} \bar{\psi}^{f} \gamma_{5} \gamma_{4} \gamma_{i} \psi^{f} \end{split}$$

Conductivity with staggered fermions

Typical plot for the staggered correlation function

Conductivity with staggered fermions

The strategy of the calculation

- Measure $C_E^{even,odd}(\tau)$ on two branches
- Reconstruct the ρ^{even,odd}(ω) (Backus-Gilbert method)

$$C_{E}^{even,odd}(t) = \int_{0}^{\infty} d\omega \rho^{even,odd}(\omega) \frac{ch(\frac{\omega}{2T} - \omega t)}{sh(\frac{\omega}{2T})}$$

• Calculate
$$\rho(\omega) = \frac{1}{2}(\rho^{even}(\omega) + \rho^{odd}(\omega))$$

(what corresponds to the $\langle J_{el}(\tau) J_{el}(0) \rangle$)

• Calculate the conductivity $\sigma = \pi \frac{\rho(\omega)}{\omega} \Big|_{\omega \sim 0}$

Backus-Gilbert method for the spectral function

• Problem: find $\rho(\omega)$ from the integral equation

$$C(x_i) = \int_0^\infty d\omega
ho(\omega) K(x_i, \omega), \quad K(x_i, \omega) = rac{ch\left(rac{\omega}{2T} - \omega x_i
ight)}{sh\left(rac{\omega}{2T}
ight)}$$

• Define an estimator $\tilde{\rho}(\bar{\omega})$ ($\delta(\bar{\omega}, \omega)$ - resolution function):

$$\tilde{
ho}(\bar{\omega}) = \int_0^\infty d\omega \hat{\delta}(\bar{\omega},\omega)
ho(\omega)$$

• Let us expand $\delta(\bar{\omega}, \omega)$ as

$$\delta(\bar{\omega},\omega) = \sum_i b_i(\bar{\omega}) K(x_i,\omega) \quad \tilde{\rho}(\bar{\omega}) = \sum_i b_i(\bar{\omega}) C(x_i)$$

Goal: minimize the width of the resolution function

$$b_i(\bar{\omega}) = \frac{\sum_j W_{ij}^{-1} R_j}{\sum_{ij} R_i W_{ij}^{-1} R_j},$$
$$W_{ij} = \int d\omega K(x_i, \omega) (\omega - \bar{\omega})^2 K(x_j, \omega), R_i = \int d\omega K(x_i, \omega)$$

Regularization by the covariance matrix S_{ij}:

$$W_{ij}
ightarrow \lambda W_{ij} + (1-\lambda) \mathcal{S}_{ij}, \quad 0 < \lambda < 1$$

Backus-Gilbert method for the spectral function

We calculate the estimator of the spectral function

$$ar{
ho}(ar{\omega}) = \int d\omega \delta(\omega,ar{\omega})
ho(\omega)$$

Average spectral function(conductivity) over the width ~ few × T

Backus-Gilbert method for the spectral function

- \blacktriangleright Width of the resolution function is $\sim (3-4) \times T$
- For very narrow spectral density BG method underestimates conductivity
- But lattice studies give the width $\sim 4T$ or larger
 - G. Aarts et al, JHEP02, 186 (2015)
 - B. B. Brandt et al, Phys. Rev. D93, 054510 (2016)
 - H.-T. Ding, et al, Phys. Rev.D94, 034504 (2016)

Details of lattice simulations

- Stout smeared staggered 2 + 1 fermions
- Physical pion m_{π} and strange m_s quark masses
- ► T ≈ 200, 250 MeV

•
$$\mu_u = \mu_d = \mu_B/3, \ \mu_s = 0$$

► Bacause of the sign problem the simulations are carried out at imaginary $\mu_B = I \mu_I$

Lattice parameters:

<i>a</i> , fm	L _s	Nt	<i>T</i> , fm
0.0988	48	10	200
0.0788	48	10	250
0.0820	48	12	200
0.0657	48	12	250
0.0618	64	16	200
0.0493	64	16	250

Conductivity at zero magnetic field eB = 0

- First calculation of the conductivity at physical pion mass
- Agreement with previous papers
- Discretization effects are under control

Conductivity at nonzero magnetic field $eB \neq 0$

$$\blacktriangleright \ \Delta \sigma = \sigma(B) - \sigma(B = 0)$$

We observe CME and magnetoresistance in QGP

Discretization effects are under control

The BG reconstructed spectral function

$$\blacktriangleright \ \Delta \rho_{\parallel} = \rho_{\parallel}(B) - \rho_{\parallel}(B = 0)$$

Considerable rise of spectral density in the infrared region

The contribution of different quarks

- The conductivity scale as q_f^3
- ► $\sigma_d/q_d^3 \simeq \sigma_s/q_s^3$, $\sigma_u/q_u^3 > \sigma_{d,s}/q_{d,s}^3$ $(|q_u| = \frac{2}{3}, |q_d| = |q_s| = \frac{1}{3})$ ► Large mass of s-quark does not influence the conductivity

E.m. conductivity at finite baryon density

• $\Delta \sigma = \sigma(\mu_I) - \sigma(\mu_I = 0)$ (to subtract UV contribution)

- Discretization effects are under control
- Our results can be well described by

$$\frac{\Delta\sigma}{TC_{em}} = -c(T) \left(\frac{\mu_l}{T}\right)^2 \Rightarrow \frac{\Delta\sigma}{TC_{em}} = c(T) \left(\frac{\mu_B}{T}\right)^2, \quad C_{em} = e^2 \sum_f q_f^2$$

- ▶ $c(T) \sim 0.007 \Rightarrow$ BARYON DENSITY ENHANCES E.M. CONDUCTIVITY
- c(T) weakly depends on temperature reasonable agreement with Phys. Rev. C 89, 035203 (2014), Phys. Rev. C 91, 044903 (2015)

Conclusion:

- E.m. conductivity at finite baryon density and strong magnetic field was calculated
- We observe CME and magnetoresistance in QGP
- Baryon density enhances e.m. conductivity

