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The Casimir e�ect

The emergence of attractive force FC be-
tween two conducting metallic plates in
vacuum.

Predicted in 1948 by Casimir.

Indirect experimental evidence in 1958.

The direct experiment in 1997 (Lamoreaux).
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Figure 1: The schematic
picture of Casimir
e�ect. Wikipedia
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Motivation

• Systems with boundaries
• MIT bag model
• Four-fermion theory with the presence of reflective

boundaries
• CPN−1 model with Dirichlet boundary conditions
• Quenched QCD with Dirichlet boundary conditions

• The e�ect of boundaries on vacuum structure of the
theory
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Casimir boundary conditions on the lattice

Action
SG = β

∑
n∈Λ

∑
µ<ν

(1− 1
NRe trUP)

UPx,µν = Ux,µUx+µ̂,νU†x+ν̂,µU†x,ν

Casimir boundary conditions

E(a)
‖ (x)

∣∣∣∣
x∈S

= B(a)
⊥ (x)

∣∣∣∣
x∈S

= 0,

a = 1, . . . ,N2
c − 1

β → βP = β[1 + (ε− 1)δP,V ]

Figure 2: The plaquette variable at
site x.

Figure 3: The position of Casimir
plates.
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Monopoles in cQED on the lattice

Compact QED Action
ScQED[θ] = β

∑
n∈Λ

∑
µ<ν

(1− cos θP)

θPx,µν = θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν

Monopoles
θ̄P = θP + 2πkP ∈ [−π, π) , kP ∈ Z

jx,µ = 1
2π

∑
P∈∂Cx,µ

θ̄P ∈ Z

ρ = 1
Vol4

∑
x,µ
|jx,µ|

The presence of monopole condensate
leads to linear confinement of electric
charges.

Figure 4: The plaquette
angle at site x.

Figure 5: Schematic
illustration of
monopole charge on
the lattice.
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The phase transition in the absence of plates

Figure 6: Left: the monopole density ρ vs lattice coupling β; Right: its susceptibility.
The vertical line marks the position of the phase transition calculated from these
observables.
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Monopole configurations in the presence of plates

Figure 7: The examples of monopole configurations in the confinement phase(left,
β = 0.8) and deconfinement phase (right, β = 0.9) for the plates separated by the
distance R = 3. Monopoles and antimonopoles are represented by the red and blue
dots, respectively. The plates, positioned vertically, are not shown.
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The monopole density between plates normalized by monopole
density in the absence of plates

Figure 8: The ratio ρins/ρ
np
ins of the monopole density ρins inside the Casimir plates to

the monopole density in the absence of the plates, ρnp
ins vs interplate separation R for

a fixed set of lattice coupling β. 8 / 18



The shift of phase transition point

Figure 9: The monopole density (left), its susceptibility (center) and the Binder
cumulant(right) for R = 2, 4, 8 (from top to bottom). 9 / 18



The phase diagram

Figure 10: The phase diagram of the vacuum of the compact U(1) gauge theory in
between the perfectly metallic plates separated by the distance R. The solid line
represents best fit βfit

c (R) = β∞c − α exp[−(R2/R2
0)ν ] with α = 3.7(6), R0 = 0.28(7),

ν = 0.257(16). The limit R→∞ is shown by the dashed horizontal line. 10 / 18



The Polyakov loop as the deconfinement order parameter

Definitions

Px =

NT−1∏
x4=0

eiθx,x4;µ=4

P = 〈Px〉

|P| =

∣∣∣∣∣∣ 1
V3

∑
x∈V3

Px

∣∣∣∣∣∣

Figure 11: The
modulus of
Polyakov loop
in the absence
of plates.

Figure 12: The
modulus of the
Polyakov loop
in the space
between the
Casimir plates
at the
separation R at
a set of fixed
coupling β.
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The Polyakov loop inside plates for di�erent R

Figure 13: The Polyakov loop inside the plates vs β at fixed R.
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The Casimir energy for SU(3) gluodynamics in (3+1)d

Energy-momentum tensor in Minkowski space:

Tµν = FµαFνα − 1
4η
µνFαβFαβ

Energy density:

E ≡ T00 = 1
2
(
B2 + E2)→ T44

E = 1
2
(
B2

E − E2
E
)
.

Lattice Casimir energy density:

ECas = βLs

( 3∑
i=1
〈 Pi4 〉S −

3∑
i<j=1
〈 Pij 〉S

)
, Px,ij = 1

3Re trUx,ij
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Glueton – new boundary state in QCD
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Figure 14: The Casimir energy density ECas as function of
distance R between chromometallic plates in units of σ.

ECas = −C0
2(N2

c−1)m2
gt

8π2R
∑∞

n=1
K2(2nmgtR)

n2

mgt = 1.0(1)
√
σ

= 0.49(5)GeV

M0++ = 3.405(21)
√
σ

= 1.653(26)GeV

(for comparison)
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Quarkiton – a quark bound by a mirror

FQ|(d) – free energy of static quark

Px = 1
3Re tr

(
Lt−1∏
x4=0

Ux,x4

)

〈Px 〉|(d) = exp
{
−LTFQ|(d)

}
Q Q̄′ 

Figure 15: Renormalized free energy of heavy
quark Fren

Q| (l) vs distance l from chromometallic
mirror in physical units.
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Quarkiton interactions

d dl
Q Q̄

chromometallic mirror

Figure 16: Correlator of Polyakov loops Cd(l) = 〈 P(x)P∗(x + l) 〉d for quark and
antiquark located at distance d from the chromometallic mirror
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A heavy quark between non-Abelian mirrors

LTFCas
Q (R) = − ln |P|V(R) ≡ − ln

〈∣∣∣ ∑
x∈V(R)

Px
∣∣∣〉

V(R) – volume between plates
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Figure 17: Mean free energy of heavy quark in between the mirrors on the lattice 324.

LTFCas
Q (R/a) = − c1

R/a + c2
R
a + c0
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Conclusions

• From first-principle numerical simulations we show that
the non-pertubative Casimir e�ect breaks monopole
condensate and induces deconfiment phase transition in
between plates for compact QED in (3+1)d

• We observed new colorless boundary state of gluons
bounded to their images in mirror with remarkably small
mass in YM SU(3) theory in (3+1)d, which we refer as
”glueton”

• We qualitatively support the existence of quarkiton –
quark bound by the mirror to its negative image

• At short interplate separation a heavy quark in the space
between mirrors possesses a finite free energy –
deconfiment of a color

Thank you for attention!
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