

ПРИМЕНЕНИЯ МЕТОДА МЕЧЕНЫХ НЕЙТРОНОВ ДЛЯ ФУНДАМЕНТАЛЬНЫХ И ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ

Юрий Николаевич Копач

ЛНФ, Отделение ядерной физики, Сектор исследований нейтронно-ядерных взаимодействий

Михаил Григорьевич Сапожников

ЛФВЭ, Отделение №5 Научно–методических исследований и инноваций, Сектор рентгеновской спектроскопии

1. Ю.Н. Копач

Метод меченых нейтронов (ММН) и его применение для фундаментальных исследований. Проект ТАНГРА.

2. М.Г. Сапожников

Практические применения ММН.

«Разработка и развитие метода меченых нейтронов для определения элементной структуры вещества и изучения ядерных реакций»

Тема: «Исследования взаимодействия нейтронов с ядрами и свойств нейтрона»

Руководитель проекта: Копач Ю.Н. Координатор: Русков И.Н.

Основные участники:

•ОИЯИ (ЛНФ, ЛФВЭ, ЛЯП, ЛРБ), г.Дубна

- •Институт им. Р.Бошковича, г. Загреб, Хорватия
- •ФГУП ВНИИА им. Н.Л.Духова, г. Москва.
- •МГУ им. Ломоносова, г. Москва.
- •ИЯИЯЭ БАН, г. София, Болгария
- •ООО «Диамант», г. Дубна

Принцип метода меченых нейтронов (ММН)

Особенности данной реакции

- 1. Нейтрон и α-частица имеют строго определенную кинетическую энергию.
- 2. Нейтрон и α-частица разлетаются в диаметрально противоположные стороны.

Зная, куда и в какой момент времени вылетела α-частица, определяем направление и момент времени вылета нейтрона (α-частица является «меткой» нейтрона)

Основные преимущества метода:

•За счет отбора событий (совпадений) в интересующей нас пространственновременной области существенно уменьшается фон.

• Точное знание о количестве нейтронов, попадающих на мишень (каждый нейтрон «помечается» α-детектором).

• Метод позволяет идентифицировать различные элементы по их характеристическим гамма-линиям.

Схема экспериментов с ММН

Некоторые характеристики коммерческих нейтронных генераторов

Тип НГ	Материал	Число мече-	Размер	Расстояние между			
	α-детектора	ных пучков	пикселя, мм	пикселями, мм			
Sodern, Euritrack	Si	64	5.8	0.2			
API-120	YAP	256	3	-			
ИНГ-27	Si	9	10	1			
ИНГ-27-64	Si	64	6	1			
ИНГ-27-256	AsGa	256	4	0,1			

ИНГ-27 Производство ВНИИА им. Духова.

Основные характеристики ИНГ-27								
Максимальная интенсивность	~1 x 10 ⁸							
Режим нейтронного излучения	Постоянный							
Питание	220 B							
Максимальная потребляемая мощность	40 Вт							
Размер нейтронного генератора	130х280х230 мм							
Bec	~ 8 кг							
Время жизни	~ 1000 часов							

Системы сбора данных

Оцифровщик ADCM-32

Оцифровщик ЦРС-32

Характеристика	ADCM	ЦРС
Число каналов	16/32/64	2/32/8/128
Разрядность АЦП	14 бит	11/16 бит
Частота оцифровки (МГц)	100/66	200 / 100
Диапазон входных амплитуд	-1 ÷ 1 B	-1 ÷ 1 B
Скорость передачи данных	~250 МБ/сек	~190 / 380 МБ/сек
Тип интерфейса	PCI-e	USB-3
Тип передачи данных	Форма сигнала	Параметры сигнала
Тип анализа данных	Программа на ПК	ПЛИС
Макс. скорость счета	~10 ⁵ событий/с	~5×10 ⁶ событий/с

 При проведении экспериментов использовались 3 типа детекторных систем на основе NaI(TI), BGO и HPGe детекторов.

Моделирование установок с помощью GEANT4

Основные цели моделирования:

- Оптимизация геометрии установок.
- Определение телесных углов детекторов и геометрических поправок.
- Определение поправок на множественное рассеяние нейтронов и самопоглощение гамма-квантов в образце.

Определение профилей меченых пучков

2-координатный стриповый кремниевый детектор

1-координатный стриповый пластиковый детектор

16 стрипов; ширина стрипа 7,5 мм

- Площадь чувствительной части профилометра 120х120 мм
- Состоит из 4 двухсторонних стриповых кремниевых детекторов 60х60 мм
- Толщина кремния 300 +/- 15 µм
- Однотипные стрипы соседних пластин соединены последовательно, образуя матрицу из 64x64 пикселей
- Размер пикселя 1810 x1810 µм
- Эффективность ~1 x 10⁻³

Аппроксимация пространственных распределений 16 меченых пучков гауссианами для альфа-детектора с пикселем 4 мм (а) и 2 мм (б).

Размер пикселя, мм	2	4
Расстояние между максимумами пиков D, мм	13,8±0,6	30.7±0,4
Ширина пиков, FWHM, мм	40,0±0,9	36.6±0,8
Размер вокселя для точечного дейтронного пучка, D,мм	14.8	38

Для ИНГ-27 размер пикселя в 4 мм можно считать оптимально наименьшим

Детекторы BGO расположены на расстоянии 75 см от образца с шагом 14⁰ по углу. Расстояние от ИНГ-27 до образца ~15 см.

Образец перекрывает 8 меченых пучков по вертикали и от 2 до 4 пучков по горизонтали.

Времяпролетный спектр, зарегистрированный в ВGO детекторе в совпадении с меченым пучком. Вертикальные фиолетовые линии показывают γ-окно шириной ±2σ_γ, синие линии - нейтронное окно.

Компоненты энергетических спектров для одного детектора BGO из оксида хрома: 1 – полный спектр в гамма-окне ±2σ_γ, 2 – фон случайных совпадений, 3 – фон от нейтронов, 4 – фон от гамма-квантов, 5 – чистый спектр (за вычетом всех фонов).

Поправки на телесные углы и поглощение в образце

Пример коррекции углового распределения для конфигурации «Ромаша» (образец-⁵²Cr). а) – схема установки, стрелками показана ось Z, совпадающая с осью симметрии системы и направление нейтронного пучка, для которого выполняется коррекция. Левая и правая половины детекторной системы выделены цветами. б) – экспериментально полученное нескорректированное угловое распределение. в) – поправленное угловое распределение. Цвета точек соответствуют цветам детекторов в а)

Применение функции отклика для подгонки энергетического спектра образца оксида хрома, полученного с помощью детектора BGO под углом ~33° к меченому нейтронному пучку. Стрелками отмечены положения фотопиков для характеристических гамма-линий хрома и кислорода.

Угловые распределения гамма-квантов для переходов в ядрах хрома

Угловые распределения ү-квантов представляют собой нормированные дифференциальные сечения:

$$\frac{d\sigma}{d\Omega}(\Theta) = \frac{\sigma^{\gamma}}{4\pi} W(\theta)$$

где величина $W(\theta)$

$$W(\theta) = 1 + \sum_{I=2,4\dots}^{2J} a_I P_I(\cos\theta)$$

Εγ(κэΒ)	Источник	a ₂	a ₄		
	Эта работа	0.34 ± 0.02	*		
935.5	Abbodanno1973	0.35 ± 0.09	*		
	Oblozinsky1992	0.27 ± 0.06	*		
	Эта работа	0.23 ± 0.02	*		
1333.6	Abbodanno1973	0.41 ± 0.09	*		
	Oblozinsky1992	0.30 ± 0.05	*		
	Эта работа	0.16 ± 0.01	-0.06 ± 0.02		
1434.1	Abbodanno1973	0.18 ± 0.05	-0.06 ± 0.07		
	Oblozinsky1992	0.13 ± 0.03	0.03± 0.04		
1520.7	Oblozinsky1992	-0.12 ± 0.31	*		
1530.7	Эта работа	0.14 ± 0.05	*		
2038.2	Эта работа	0.15 ± 0.04	*		
3128.9	Эта работа	0.01 ± 0.03			

Измерение выходов у-квантов

Установка для измерения выходов γквантов с помощью HPGe детектора

Типичная схема анализа временных спектров в экспериментах с ММН

Сравнение спектров *γ*-квантов от железа, полученных детекторами BGO и HPGe

Выбор полезных событий на двухмерном спектре энергия - время пролета в экспериментах с HPGe Counts

Определение выходов γ-квантов на примере образца Cr₂O₃

Фрагмент энергетического спектра гаммаквантов, измеренного детектором ОЧГ для образца Cr₂O₃.

А – события в окне совпадений,

Б – фон случайных совпадений в этом же окне, В – чистый спектр за вычетом фона случайных совпадений.

№	Энергия (кэВ)	Реакция	Сечение s (мб)
1	124.5 125.1	52Cr(n,p)52V	6.4 12.1
2	140.1 140.3	209Bi(n,n`)209Bi 209Bi(n,2n)208Bi	4.4 101.2
3	169.3	16O(n,a)13C	23.1
4	200	Фон	-
5	226.2	50Cr(n,p)50V	10.7
6	298.2	16O(n,p)15N	22.5
7	320.1	52Cr(n,p)52V	8.6

Пример аппроксимации ү-спектра, полученного с помощью ОЧГ детектора при облучении образца из оксида хрома (синяя гистограмма) в сравнении со спектром антисовпадений (красная гистограмма)

Поправки на эффективность детектора и поглощение в образце

Расчетные величины $\epsilon(E_{\gamma})$ (образец- Cr_2O_3) для пучков No 3 – 6 а) – г), соответственно), пучок No 5 проходит через центр образца, ближайшим к детектору является пучок No 6.

Поправки вычислялись с помощью GEANT4 и нормировались на измерения со стандартными гамма-источниками.

Таблица выходов γ-квантов для хрома

				Y ₂ ,%					
Е _γ (кэВ)	Реакция	J _i ^P (E _i , кэВ)	$J_{j}^{P}(E_{j}, \kappa) B$	Эта	[42]	[3]			
				работа					
124,4	$^{52}Cr(n,p)^{52}V$	(141,6)	(17,2)	2,4 (0,5)					
226,3	${}^{50}Cr(n,p){}^{50}V$	(226,2)	(0)	3,0(0,6)					
320,1	${}^{52}Cr(n,d){}^{51}V$	(320,1)	(0)	2,2 (0,8)		1,8(0,1)			
567,0	${}^{52}Cr(n,n'){}^{52}Cr$	(4039,2)	(3472,2)	5,0(0,9)					
600,2	${}^{52}Cr(n,n'){}^{52}Cr$	(4015,5)	(3415,3)	10,0 (1,6)					
645,7*	${}^{52}Cr(n,p){}^{52}V$	(793,5)	(147,8)	85(10)					
647,5*	${}^{52}Cr(n,n'){}^{52}Cr$	(3415,3)	(2767,8)	0,5 (1,0)		8,9 (0,3)			
704,5	${}^{52}Cr(n,n'){}^{52}Cr$	(3472,2)	(2767,8)	-		5,4 (0,2)			
744,2*	${}^{52}Cr(n,n'){}^{52}Cr$	(3113,9)	(2369,6)	122(15)	16,3 (2,9)	9,1 (0,3)			
749,1*	${}^{52}Cr(n,2n){}^{51}Cr$	(749,1)	(0)	12,5 (1,5)		5,4 (0,2)			
783,3	${}^{50}Cr(n,n'){}^{50}Cr$	(783,3)	(0)	4,2 (0,5)					
791,3	$^{52}Cr(n,2n)^{51}Cr$	(4563,0)	(3771,7)	2,9(0,5)					
834,9	${}^{54}Cr(n,n'){}^{54}Cr$	(834,9)	(0)	3,1 (0,4)					
848,2	$5^{2}Cr(n,n')^{5^{2}}Cr$	(3615,9)	(2767,8)	7,3 (0,5)					
935,5	${}^{52}Cr(n,n'){}^{52}Cr$	(2369,6)	(1434,1)	33,5 (0,8)	26,9 (3,8)	30,3 (1,2)			
1164,6	${}^{52}Cr(n,2n){}^{51}Cr$	(1164,6)	(0)	-		4,6 (0,2)			
1246,3*	520 (1)520	(3615,9)	(2369,6)	5.8(0,0)		5,0(0,2)			
1247,7*	$^{52}Cr(n,n^{2})^{52}Cr$	(4015,5)	(2767,8)	5,8 (0,9)					
1289,5	${}^{53}Cr(n,n'){}^{53}Cr$	(1289,5)	(0)	3,3 (0,7)					
1333,7	$^{52}Cr(n,n')^{52}Cr$	(2767,8)	(1434,1)	26,4 (0,8)	22,1 (4,0)	26,2 (1,0)			
1434,1	${}^{52}Cr(n,n'){}^{52}Cr$	(1434,1)	(0)	100	100	100			
1530,7	$^{52}Cr(n,n')^{52}Cr$	(2964 ,8)	(1434,1)	6,8 (0,6)	9,5 (3,0)	5,1 (0,2)			
1727,7*	520 (1)520	(3161,7)	(1434,1)	5.7(0.7)		3,3 (0,1)			
1730,4*	r(n,n)	(4100,0)	(2369,6)	3,7 (0,7)					
2038,2	${}^{52}Cr(n,n'){}^{52}Cr$	(3472,2)	(1434,1)	1,7 (0,5)					
2257,7	${}^{52}Cr(n,n'){}^{52}Cr$	(4627,3)	(2369,6)	1,1 (0,5)					
2337,6	$5^{2}Cr(n,n')^{52}Cr$	(3771,7)	(1434,1)	2,1 (0,6)					
3128,9	$5^{2}Cr(n,n')^{52}Cr$	(4563,0)	(1434,1)	2,0 (0,7)					

2)-.

21

Для линий, помеченных красным цветом, определены угловые распределения

Измерение угловых распределений нейтронов, рассеянных на ядрах углерода

20 детекторов на основе пластикового сцинтиллятора EJ-200 размером 80х80х300 мм, расположенных по окружности радиусом 204 см с шагом 15°. Углы 90° и 270° были пропущены из-за большого самопоглощения в образце.

Образец – графитовая пластина размерами 2*44*44 см³, с плотностью 1,74 (г/см³)

Измерение угловых распределений нейтронов, рассеянных на ядрах углерода

Времяпролётные гистограммы, полученные в эксперименте TANGRA по рассеянию нейтронов на графитовом образце для двух углов рассеяния нейтрона.

А – измерение с графитовым образцом

Б – измерение без образца

В – разностный спектр

1 – пик γ-квантов, от конструкционных элементов генератора
2 - γ -кванты из образца
3 - нейтроны, рассеянные по каналу (n,n₀)
4,5,6 - нейтроны, рассеянные по

каналам (n,n₁), (n,n₂), (n,n₃)

7 - ү-кванты от нейтронов, рассеянных на стене экспериментального зала.

Измерение угловых распределений нейтронов, рассеянных на ядрах углерода

Полученные угловые распределения нейтронов, рассеянных на ¹²С, для основного состояния (слева) и первого возбужденного состояния (справа).

Черные точки – эта работа, красные – Boerker et al (1991).

Результаты расчета в TALYS: синие линии – параметры по умолчанию красные линии – параметры из подгонки сплошная линия – дифференциальное сечение пунктирная линия – вклад прямых процессов прерывистая линия – вклад процессов, идущих через составное ядро.

Выводы по первой части:

Метод меченых нейтронов является эффективным инструментом для исследований реакций быстрых нейтронов с ядрами, что позволяет успешно реализовывать программу по измерению выходов и угловых распределений гамма-квантов и нейтронов в этих реакциях.

Period	1	Periodic Table 1-172											18	Orbitals					
1	1 H	- Измерено в Nal/BGO/HpGe 2 - Измерено в Nal/HpGe 13 14 15												15	16	17	2 He	1s	
2	3 Li	4 Be	4 - Измерено в BGO/HpGe - Измерено в HpGe В С N O F M												10 Ne	2s2p			
3	11 Na	12 Mg	3	- не і 4	измер 5	оено 6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3s3p
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4s3d4p
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe	5s4d5p
6	55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6s5d6p
7	87 Fr	88 Ra	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og	7s6d7p
8	119	120	121-	156	157	158	159	160	161	162	163	164	139	140	169	170	171	172	8s7d8p
9	165	166		- Оп	іубли	кован	10						167	168					9s9p
		6	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		4f
		7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		5f
		8	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		6f