Small-angle elastic pp scattering track reconstruction

A. Terkulov

Lebedev Physical Institute, Moscow

slide from A.L'vov presentation:

https://indico.jinr.ru/event/1373/

Antipov et al. preprint 1976.

A. L'vov. 4th SPD Physics and MC meeting, JINR, 17.06.2020

endcap planes with straws Y 85 straw with radius 1cm beam pipe radius 3.2cm beam pipe: material – aluminium wall thickness - 1mm hole: default half size - 10cm variate from 3.5cm to 10cm -85 85 Х -85

Simulation:

protons with $\sqrt{s} = 3.5 \text{Gev} - 10 \text{ Gev}$ in opposite directions t = -0.1Gev² -0.2Gev² -0.3Gev² -0.4Gev² -0.5Gev²

azimuthal ϕ : uniformly distributed between 0 and 2π

polar angle θ : according with corresponding t

Reconstruction:

from GenFit2 take reconstructed polar and azimuthal angles only,

energy of the scattered proton sets equal to initial energy of the proton

√s(GeV)	t(GeV²)	hole half size(cm)	hits in vertex tracker	hits in barrel tracker	hits in endcap tracker
3.5	-0.1	10	~0 - 2	~0 - 2	~8-12
3.5	-0.2	10	~2 - 3	~8 - 10	~12 - 14
3.5	-0.3	10	~2 - 3	~10 - 18	~14 - 16
3.5	-0.4	10	~2 - 3	~20 - 30	~15 - 16
3.5	-0.5	10	~2 - 3	~25 - 35	~16 - 18

hole half size - 10cm

√s = 3.5GeV

√s(GeV)	t(GeV ²)	hole half size(cm)	hits in vertex tracker	hits in barrel tracker	hits in endcap tracker
10	-0.1	10	0	0	0
10	-0.2	10	0	0	~1 - 2
10	-0.1	6.5	0	0	0
10	-0.1	5.0	0	0	0
10	-0.1	4.0	0	0	~2 - 4
10	-0.1	3.5	0	0	~3 - 7
10	-0.2	3.5	0	0	~8 - 12
5	-0.1	10	~1	0	~8 - 10
5	-0.2	10	~1	0	~10 - 12
5	-0.3	10	~1 - 2	~2 - 4	~12 - 14
5	-0.4	10	~2 - 3	~4 - 7	~12 - 15
5	-0.5	10	~2 - 3	~8 - 10	~14 - 16

√s = 5.0GeV

Summary

1. For small-angle elastic pp scattering with t around -0.1Gev² and total energy $\sqrt{s} = 10$ Gev no possibility detect outgoing particles. It needs to have smaller initial energy.

t = -0.15Gev² √s = 27Gev

particle path in beam pipe wall

t	θ	path
-0.1Gev ²	1.35 [°]	~4.3cm
-0.15Gev ²	1.65°	~3.5cm
-0.2Gev ²	1.9 ⁰	~3cm
-0.5Gev ²	3 ⁰	~1.9cm

with beam pipe

without beam pipe

√s = 27Gev

Y

of planes in endcap tracker – 52 in each direction

one possibility – change total energy less energy — larger polar angle — less path in beam pipe wall

t = -0.1Gev²

Backup

of planes in endcap tracker – 52 in each direction

$$t = -0.1(Gev/c)^2$$

polar angle 1.35°

 $t = -0.5(Gev/c)^2$ \longrightarrow polar angle 3^o

t(Gev/c) ²	hits in vertex tracker	hits in barrel tracker	hits in endcap tracker
-0.1	0	0	~7
-0.2	0	0	~19
-0.3	0	0	~45
-0.4	0	0	~52
-0.5	~1	0	~52
-0.9	~4	0	~52
-4.5	~5	0	~52

fit start P = 13Gev

fit start P = 1Gev

7

fit by straight line, no Kalman fit

polar angle 28°

A. L'vov. 4th SPD Physics and MC meeting, JINR, 17.06.2020