Few-nucleon systems in the Bethe-Salpeter approach

S. Bondarenko
BLTP JINR, Dubna

Dedicated to memory of Professor Valery Burov

Why a relativistic approach?

- Elastic electron-deuteron scattering experiments
"Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function $A\left(Q^{2}\right)$ at Jefferson Laboratory"
JLab Hall A Collaboration, Phys.Rev.Lett.82:1374-1378,1999
$Q^{2}=0.7-6.0(\mathrm{GeV} / \mathrm{c})^{2}$
Lorentz transformation: $\eta_{L O R}=-Q^{2} / 4 M_{d}^{2} \sim 0.43, \sqrt{1+\eta_{L O R}} \sim 1.19$
- Exclusive disintegration of the deuteron experiments JLab Hall C Deuteron Electro-Disintegration at Very High Missing Momenta (E12-10-003) proposal https://www.jlab.org/exp_prog/proposals/10/PR12-10-003.pdf:
"We propose to measure the $D(e, e ' p) n$ cross section at $Q^{2}=4.25(\mathrm{GeV} / \mathrm{c})^{2}$ and $\mathrm{xbj}=1.35$ for missing momenta ranging from $\mathrm{pm}=0.5 \mathrm{GeV} / \mathrm{c}$ to $\mathrm{pm}=1.0 \mathrm{GeV} / \mathrm{c}$ expanding the range of missing momenta explored in the Hall A experiment (E01-020)"

Lorentz transformation: $\eta_{L O R}=-Q^{2} / 4 s_{n p} \sim 0.30, \sqrt{1+\eta_{L O R}} \sim 1.14$

Bethe-Salpeter equation for the nucleon-nucleon T matrix

$$
T\left(p^{\prime}, p ; P\right)=V\left(p^{\prime}, p ; P\right)+\frac{i}{4 \pi^{3}} \int d^{4} k V\left(p^{\prime}, k ; P\right) S_{2}(k ; P) T(k, p ; P)
$$

p^{\prime}, p - the relative four-momenta
P - the total four-momentum
$V\left(p^{\prime}, p ; P\right)$ - the interaction kernel
$S_{2}^{-1}(k ; P)=\left(\frac{1}{2} P \cdot \gamma+k \cdot \gamma-m\right)^{(1)}\left(\frac{1}{2} P \cdot \gamma-k \cdot \gamma-m\right)$
free two-particle Green function

Separable kernels of the NN interaction

The separable kernels of the nucleon-nucleon interaction are widely used in the calculations. The separable kernel as a nonlocal covariant interaction representing complex nature of the space-time continuum.
Separable ansatz for the kernel

$$
V\left(p^{\prime} ; p ; s\right)=\sum_{m, n=1}^{N} \lambda_{m n}(s) g_{m}\left(p^{\prime}\right) g_{n}(p)
$$

Solution for the T matrix

$$
T\left(p^{\prime} ; p ; s\right)=\sum_{m, n=1}^{N} \tau_{m n}(s) g_{m}\left(p^{\prime}\right) g_{n}(p)
$$

where

$$
\begin{gathered}
{\left[\tau_{m n}(s)\right]^{-1}=\left[\lambda_{m n}(s)\right]^{-1}+h_{m n}(s),} \\
h_{m n}(s)=-\frac{i}{(2 \pi)^{4}} \int d^{4} k g_{m}(k) g_{n}(k) S_{2}(k ; P)
\end{gathered}
$$

g - the model functions, $\lambda(s)$ - a matrix of model parameters.

What is a separable kernel?

The integral equations in the nuclear physics (Lippmann-Schwinger, Bethe-Salpeter) are similar to the Fredholm (first or second) type of equations. The separable kernel of the integral equation is the degenerated kernel. Fredholm integral equation of the second type:

$$
\phi(x)=f(x)+\lambda \int d y K(x, y) \phi(y)
$$

Degenerated kernel of the equation:

$$
K(x, y)=\sum_{i} a_{i}(x) b_{i}(y)
$$

Solution of the equation:

$$
\phi(x)=f(x)+\lambda \sum_{i} c_{i} a_{i}(x)
$$

Constants c_{i} can be found by solving the system of linear equations

$$
c_{i}-\lambda \sum_{j} k_{i j} c_{j}=f_{i}
$$

Matrix $k_{i j}$ and f_{i} are:

$$
k_{i j}=\int d y b_{i}(y) a_{j}(y), \quad f_{i}=\int d y f(y) b_{i}(y)
$$

Separable NN kernels for BS equation

- NN scattering with spinor nucleon propagators
G. Rupp and J. A. Tjon "Relativistic contributions to the deuteron electromagnetic form factors" Phys. Rev. C41. 472 (1990) Nonrelativistic Graz-II \rightarrow relativistic Graz-II (only ${ }^{3} S_{1}-{ }^{3} D_{1}$ partial-wave states)
- NN scattering with scalar nucleon propagators
K. Schwarz, J. Haidenbauer, J. Frohlich "A Separable Approximation of the NN Paris Potential in the Framework of the Bethe-Salpeter Equation" Phys.Rev. C33 456-466 (1986) partial-wave states with $J=0,1$ for Paris meson-exchange potentials
G. Rupp, J.A. Tjon "Bethe-Salpeter calculation of three-nucleon with multirank observables separable interactions" Phys.Rev. C45 2133 (1991) ${ }^{1} S_{0}$ and ${ }^{3} S_{1}-{ }^{3} D_{1}$ partial-wave states for Paris and Bonn meson-exchange potentials

Reactions in the BS approach

Bethe-Salpeter approach with separable kernel:

- $N N$-scattering, dispersion relations for separable T matrix: S.Bondarenko, V.Burov, S.Dorkin
- elastic $e D$-scattering: S.Bondarenko, V.Burov, S.Dorkin, A.Bekzhanov, M.Beyer, H.Toki, A.Hosaka, N.Hamamoto, Y.Manabe
- deep-inelastic scattering: V.Burov, A.Molochkov, G.Smirnov
- deuteron photodisintegration at threshold: S.Bondarenko, V.Burov, K.Kazakov, D.Shulga
- partial-wave analisys of $N N$-scattering: S.Bondarenko, V.Burov, E.Rogochaya, P.Hwang
- exclusive deuteron electrodisintegration: S.Bondarenko, V.Burov, E.Rogochaya
- three-nucleon systems, elastic election-3N scattering: S.Bondarenko, V.Burov, S.Yurev

Elastic $e+{ }^{3} \mathrm{He}\left({ }^{3} \mathrm{H}\right) \rightarrow e+{ }^{3} \mathrm{He}\left({ }^{3} \mathrm{H}\right)$ scattering

Experimental data for ${ }^{3} \mathrm{He}$ (first line) and ${ }^{3} \mathrm{H}$ (second line)

Relativistic covariant spectator theory (F. Gross, M. Pena et al.)

The relativistic three-particle equation for T matrix

is considered in the Faddeev form with the following assumptions:

- no three-particles interaction $V_{123}=\sum_{i \neq j} V_{i j}$
- two-particles interaction is separable
- nucleon propagators are chosen in a scalar form
- the only strong interactions are considered (not EM), so ${ }^{3} \mathrm{He} \equiv T$

Bethe-Salpeter-Faddeev equation

$$
\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right]=\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]-\left[\begin{array}{ccc}
0 & T_{1} G_{1} & T_{1} G_{1} \\
T_{2} G_{2} & 0 & T_{2} G_{2} \\
T_{3} G_{3} & T_{3} G_{3} & 0
\end{array}\right]\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right]
$$

Three-particles T matrix $T=\sum_{i} T^{(i)}$
Two-particle Green functions G_{i} is the free two-particles (j and n)
Two-particle T_{i} matrix
G. Rupp, J. A. Tjon, Phys. Rev. C 37 (1988), 1729
G. Rupp, J. A. Tjon, Phys. Rev. C 45 (1992), 2133.

Bethe-Salpeter-Faddeev equation

Introducing the equal-mass Jacobi momenta

$$
p_{i}=\frac{1}{2}\left(k_{j}-k_{n}\right), \quad q_{i}=\frac{1}{3} K-k_{i}, \quad K=k_{1}+k_{2}+k_{3} .
$$

Amplitude of three-particle state as a projection of T matrix to the bound state:

$$
\Psi^{(i)}\left(p_{i}, q_{i} ; s\right)=\left\langle p_{i}, q_{i}\right| T^{(i)}\left|M_{B}\right\rangle,
$$

with $\sqrt{s}=M_{B}=3 m_{N}-E_{t}$.

Partial-wave three-nucleon functions for a one-rank separable kernel

$$
\Psi^{(a)}(p, q ; s)=g^{(a)}(p) \tau^{(a)}\left[\left(\frac{2}{3} \sqrt{s}+q\right)^{2}\right] \Phi^{(a)}(q ; s)
$$

System of the integral equations

$$
\Phi^{(a)}(q ; s)=\frac{i}{4 \pi^{3}} \sum_{a^{\prime}} \int d^{4} q^{\prime} Z^{\left(a a^{\prime}\right)}\left(q ; q^{\prime} ; s\right) \frac{\tau^{\left(a^{\prime}\right)}\left[\left(\frac{2}{3} \sqrt{s}+q^{\prime}\right)^{2}\right]}{\left(\frac{1}{3} \sqrt{s}-q^{\prime}\right)^{2}-m_{N}^{2}+i \epsilon} \Phi^{\left(a^{\prime}\right)}\left(q^{\prime} ; s\right)
$$

with effective kernels of equation

$$
Z^{\left(a a^{\prime}\right)}\left(q ; q^{\prime} ; s\right)=C_{\left(a a^{\prime}\right)} \frac{g^{(a)}\left(-q / 2-q^{\prime}\right) g^{\left(a^{\prime}\right)}\left(q+q^{\prime} / 2\right)}{\left(\frac{1}{3} \sqrt{s}+q+q^{\prime}\right)^{2}-m_{N}^{2}+i \epsilon}
$$

Method of solution

- Wick-rotation procedure: $q_{0} \rightarrow i q_{4}$
- The Gaussian quadrature with $N_{1} \times N_{2}\left[q_{4} \times|\mathbf{q}|\right]$ grid

$$
\begin{aligned}
& q_{4}=(1+x) /(1-x) \\
& |\mathbf{q}|=(1+y) /(1-y)
\end{aligned}
$$

- Iteration method to obtain the triton binding energy

$$
\left.\lim _{n \rightarrow \infty} \frac{\Phi_{n}(s)}{\Phi_{n-1}(s)}\right|_{s=M_{B}^{2}}=1
$$

The convergence was investigated and $N_{1}=96, N_{2}=15$ was used in calculations

Rank-one Yamagichi kernels

Two-nucleon low-energy parameters for ${ }^{1} S_{0}^{+}$channel, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}^{+}$channels

	Exp.	${ }^{1} S_{0}$
$a_{L}(\mathrm{fm})$	-23.748	-23.753
$r_{L}(\mathrm{fm})$	2.75	2.75

	Exp.	${ }^{3} S_{1}-{ }^{3} D_{1}$ $\left(p_{d}=4 \%\right)$	${ }^{3} S_{1}-{ }^{3} D_{1}$ $\left(p_{d}=5 \%\right)$	${ }^{3} S_{1}-{ }^{3} D_{1}$ $\left(p_{d}=6 \%\right)$
$a_{L}(\mathrm{fm})$	5.424	5.454	5.454	5.453
$r_{L}(\mathrm{fm})$	1.756	1.81	1.81	1.80

Triton binding energy (MeV) with the one-rank Yamaguchi-type separable kernel

p_{D}	${ }^{1} S_{0}-{ }^{3} S_{1}$	${ }^{3} D_{1}$	${ }^{3} P_{0}$	${ }^{1} P_{1}$	${ }^{3} P_{1}$
4	9.221	9.294	9.314	9.287	9.271
5	8.819	8.909	8.928	8.903	8.889
6	8.442	8.545	8.562	8.540	8.527
8.48					

- the main contribution is from S-states
- the D-state contribution is about $0.8-1.2 \%$ depending on D-wave (pseudo)probability in deuteron
- the P-state contributions are alternating and give about -0.2%

Multi-rank kernels

Two-nucleon low-energy parameters for ${ }^{1} S_{0}^{+}$channel, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}^{+}$channels The relativistic generalization of the NR Graz-II and Paris separable kernel:

- Graz-II: ${ }^{1} S_{0}^{+}$- rank 2, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ - rank 3
- Paris-1,2: ${ }^{1} S_{0}^{+}$- rank 3, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ - rank 4

$\underline{\text { Results for }{ }^{1} S_{0}^{+} \text {channel }}$

	Exp.	Graz-II	Paris-1	Paris-2
$a(\mathrm{fm})$	-23.748	-23.77	-23.72	-23.72
$r_{0}(\mathrm{fm})$	2.75	2.683	2.810	2.817

Results for ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ channels

	Exp.	Graz-II	Graz-II	Graz-II	Paris-1	Paris-2
$p_{d}(\%)$		4	5	6	5.77	5.77
$a(\mathrm{fm})$	5.424	5.419	5.420	5.421	5.426	5.413
$r_{0}(\mathrm{fm})$	1.759	1.780	1.779	1.778	1.775	1.765
$E_{d}(\mathrm{MeV})$	2.2246	2.2254	2.2254	2.2254	2.2246	2.2250

Results for multi-rank separable kernel

Table: Triton binding energy (MeV) with Graz-II kernel

Kernel	Nonrelativistic		Relativistic	
	${ }^{1} S_{0},{ }^{3} S_{1}$	${ }^{1} S_{0},{ }^{3} S_{1},{ }^{3} D_{1}$	${ }^{1} S_{0},{ }^{3} S_{1}$	${ }^{1} S_{0},{ }^{3} S_{1},{ }^{3} D_{1}$
GRAZ-II $p_{D}=4 \%$	8.372	8.334	8.628	8.617
GRAZ-II $p_{D}=5 \%$	7.964	7.934	8.223	8.217
GRAZ-II $p_{D}=6 \%$	7.569	7.548	7.832	7.831

Table: Triton binding energy (MeV) with Paris-1(2) kernel

Kernel	E_{t}
Paris-1	7.535
Paris-2	7.474

Electromagnetic form factors of three-nucleon systems:

$$
\begin{aligned}
& 2 F_{\mathrm{C}}\left({ }^{3} \mathrm{He}\right)=\left(2 F_{\mathrm{C}}^{p}+F_{\mathrm{C}}^{n}\right) F_{1}-\frac{2}{3}\left(F_{\mathrm{C}}^{p}-F_{\mathrm{C}}^{n}\right) F_{2}, \\
& F_{C}\left({ }^{3} \mathrm{H}\right)=\left(2 F_{\mathrm{C}}^{n}+F_{\mathrm{C}}^{p}\right) F_{1}+\frac{2}{3}\left(F_{\mathrm{C}}^{p}-F_{\mathrm{C}}^{n}\right) F_{2}, \\
& \mu\left({ }^{3} \mathrm{He}\right) F_{\mathrm{M}}\left({ }^{3} \mathrm{He}\right)=\mu_{n} F_{\mathrm{M}}^{n} F_{1}+\frac{2}{3}\left(\mu_{n} F_{\mathrm{M}}^{n}+\mu_{p} F_{\mathrm{M}}^{p}\right) F_{2}+\frac{4}{3}\left(F_{\mathrm{M}}^{p}-F_{\mathrm{M}}^{n}\right) F_{3}, \\
& \mu\left({ }^{3} \mathrm{H}\right) F_{\mathrm{M}}\left({ }^{3} \mathrm{H}\right)=\mu_{p} F_{\mathrm{M}}^{p} F_{1}+\frac{2}{3}\left(\mu_{n} F_{\mathrm{M}}^{n}+\mu_{p} F_{\mathrm{M}}^{p}\right) F_{2}+\frac{4}{3}\left(F_{\mathrm{M}}^{n}-F_{\mathrm{M}}^{p}\right) F_{3},
\end{aligned}
$$

Electric and magnetic form factors of the proton and neutron $F_{\mathrm{C}, \mathrm{M}}^{p, n}$.

Impulse approximation:

$$
F_{i}(Q)=\int d^{4} p \int d^{4} q G_{1}^{\prime}\left(\hat{k}_{1}^{\prime}\right) G_{1}\left(\hat{k}_{1}\right) G_{2}\left(\hat{k}_{2}\right) G_{3}\left(\hat{k}_{3}\right) f_{i}\left(p, q, q^{\prime} ; P, P^{\prime}\right)
$$

Nucleon propagators:

$$
\begin{aligned}
& G_{i}\left(\hat{k}_{1}\right)=\left[\hat{k}_{i}^{2}-m_{N}^{2}+i \epsilon\right]^{-1} \\
& G_{1}^{\prime}\left(q_{0}^{\prime}, q^{\prime}\right)=\left[\left(\frac{1}{3} \sqrt{s}-q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}-m_{N}^{2}+i \epsilon\right]^{-1}
\end{aligned}
$$

Three-nucleon vertex functions:

$$
\begin{aligned}
& f_{1}=\sum_{i=1}^{3} \Psi_{i}^{*}(p, q ; P) \Psi_{i}\left(p, q^{\prime} ; P^{\prime}\right) \\
& f_{2}=-3 \Psi_{1}^{*}(p, q ; P) \Psi_{2}\left(p, q^{\prime} ; P^{\prime}\right) \\
& f_{3}=\Psi_{3}^{*}(p, q ; P) \Psi_{3}\left(p, q^{\prime} ; P^{\prime}\right)
\end{aligned}
$$

Functions Ψ_{i} are the definite combinations of the partial state functions.

The Breit reference system

$$
\begin{equation*}
Q=(0, \mathbf{Q}), \quad P=\left(E_{B},-\frac{\mathbf{Q}}{2}\right), \quad P^{\prime}=\left(E_{B}, \frac{\mathbf{Q}}{2}\right) \tag{1}
\end{equation*}
$$

with $s=M_{3 N}^{2}, \eta=\mathbf{Q}^{2} / 4 s, E_{B}=\sqrt{\mathbf{Q}^{2} / 4+s}=\sqrt{s} \sqrt{1+\eta}$.

$$
\begin{array}{lll}
P=\mathrm{L} P_{c . m .}, & p=\mathrm{L} p_{c . m .}, & q=\mathrm{L} q_{c . m .} \\
P^{\prime}=\mathrm{L}^{-1} P_{c . m .}^{\prime}, & p^{\prime}=\mathrm{L}^{-1} p_{c . m .}^{\prime}, & q^{\prime}=\mathrm{L}^{-1} q_{c . m}^{\prime}
\end{array}
$$

The explicit form of the transformation L can be obtained by using (1). Let us assume the boost of the system to be along the Z axis:

$$
\mathrm{L}=\left(\begin{array}{cccc}
\sqrt{1+\eta} & 0 & 0 & -\sqrt{\eta} \tag{2}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sqrt{\eta} & 0 & 0 & \sqrt{1+\eta}
\end{array}\right)
$$

Relation of the arguments of initial and final $3 N$ functions:

$$
\begin{align*}
& q_{0}^{\prime}=(1+2 \eta) q_{0}-2 \sqrt{\eta} \sqrt{1+\eta} q_{z}+\frac{2}{3} \sqrt{\eta} Q \tag{3}\\
& q_{x}^{\prime}=q_{x} \quad q_{y}^{\prime}=q_{y} \\
& q_{z}^{\prime}=(1+2 \eta) q_{z}-2 \sqrt{\eta} \sqrt{1+\eta} q_{0}-\frac{2}{3} \sqrt{1+\eta} Q
\end{align*}
$$

here $q_{z}=q \cos \theta_{q Q}$ is the projection of momentum \mathbf{q} onto the Z axis

Static approximation (SA) [G. Rupp, J. A. Tjon]:

$$
q_{0}^{\prime}=q_{0}, \quad \mathbf{q}^{\prime}=\mathbf{q}-\frac{2}{3} \mathbf{Q}
$$

Propagator and final function:

$$
\begin{aligned}
& G_{1}^{\prime}\left(q_{0}^{\prime}, q^{\prime}\right) \rightarrow\left[\left(\frac{1}{3} \sqrt{s}-q_{0}\right)^{2}-\mathbf{q}^{2}-\frac{2}{3} \mathbf{q} \cdot \mathbf{Q}-\frac{4}{9} \mathbf{Q}^{2}-m_{N}^{2}+i \epsilon\right]^{-1} \\
& \Psi_{i}\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow \Psi_{i}\left(p_{0}, p, q_{0},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right)
\end{aligned}
$$

with $\mathbf{q} \cdot \mathbf{Q}=q Q \cos \theta_{q Q}$.
The poles of G_{1}^{\prime} on q_{0} do not cross the imaginary q_{0} axis and always stay in the second and fourth quadrants. In this case, the Wick rotation procedure $q_{0} \rightarrow i q_{4}$ can be applied.

Beyond the SA:

1. Exact propagator

$$
\begin{aligned}
& G_{1}^{\prime}=\left[q_{0}^{2}+\frac{2}{3} \sqrt{s}(1+6 \eta) q_{0}+4 \sqrt{1+\eta} \sqrt{s} \sqrt{\eta} q_{z}-\frac{8}{3} \eta s+\frac{1}{9} s-\mathbf{q}^{2}-m_{N}^{2}+i \epsilon\right] \\
& \Psi_{i}\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow \Psi_{i}\left(p_{0}, p, q_{0},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right) .
\end{aligned}
$$

For any $t=-Q^{2}>-Q_{\text {min }}^{2}=2 / 3 \sqrt{s}\left(3 m_{N}-\sqrt{s}\right)$ the pole of G_{1}^{\prime} on q_{0} crosses the imaginary q_{0} axis and appears in the third quadrant.

Beyond the SA:

2. Additional term from residue inside the countour of integration

Using the Cauchy theorem, one can transform the integrals over p_{0}, q_{0} as follows:

$$
\begin{align*}
& \int d^{4} p \int d^{4} q \ldots f(p ; q)= \tag{4}\\
& -\int d^{4} p_{E} \int d q_{E} f\left(p_{E} ; q_{E}\right) \\
& +2 \pi \underset{q_{0}=q_{0}^{(2)}}{\operatorname{Res}} \int d^{4} p_{E} \int_{q_{\min }}^{q_{\max }} d q \int_{y_{\min }}^{1} d y \ldots f\left(p_{E}, ; q_{0}^{(2)}, q, y\right),
\end{align*}
$$

where (\ldots) means the two-fold integral $\int_{0}^{\infty} d p \int_{-1}^{1} d x$ and

$$
\begin{equation*}
q_{0}^{(1,2)}=\frac{\sqrt{s}}{3}(1+6 \eta) \pm \sqrt{4 \eta(1+\eta) s-4 \sqrt{s} \sqrt{\eta} \sqrt{1+\eta} q y+\mathbf{q}^{2}+m_{N}^{2}} \tag{5}
\end{equation*}
$$

are the simple poles of the propagator G_{1}^{\prime}.

Beyond the SA:

3. Final function arguments transformation

Remembering that the BSF solutions are known for real values of q_{4} only, the following assumption was made:

$$
\Psi\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow g\left(p_{0}, p\right) \tau\left[\left(\frac{2}{3} \sqrt{s}+q_{0}^{(2)}\right)^{2}-\overline{\mathbf{q}}^{\prime 2}\right] \Phi\left(0, \bar{q}^{\prime}\right)
$$

where value \bar{q}^{\prime} is obtained using (3) with $q_{0}=q_{0}^{(2)}$.
The expansion of the function $\Phi\left(q_{4}^{\prime}, q^{\prime}\right)$ up to the first order of the parameter η :

$$
\begin{aligned}
\Phi\left(i q_{4}^{\prime}, q^{\prime}\right)=\Phi\left(i q_{4},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right)+ & {\left[C_{q_{4}} \frac{\partial}{\partial q_{4}} \Phi_{j}\left(i q_{4}, q\right)\right]_{q=\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|} } \\
& +\left[C_{q} \frac{\partial}{\partial q} \Phi_{j}\left(i q_{4}, q\right)\right]_{q=\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|}
\end{aligned}
$$

The function Φ^{\prime} is determined by the integral

$$
\Phi^{\prime}=\int K^{\prime} \Phi
$$

where K^{\prime} is a derivative of the kernel of the integral equation.

Graz-II relativistic kernel

Paris relativistic kernel

Summary

- the relativistic three-nucleon vertex functions were founs solving the BSF system of equations
- the charge and magnetic EM form factors of the 3 N systems were calculated
- the static approximation and relativistic corrections were investigated
- the relativistic corrections were found to be significant in describing the experimental data

