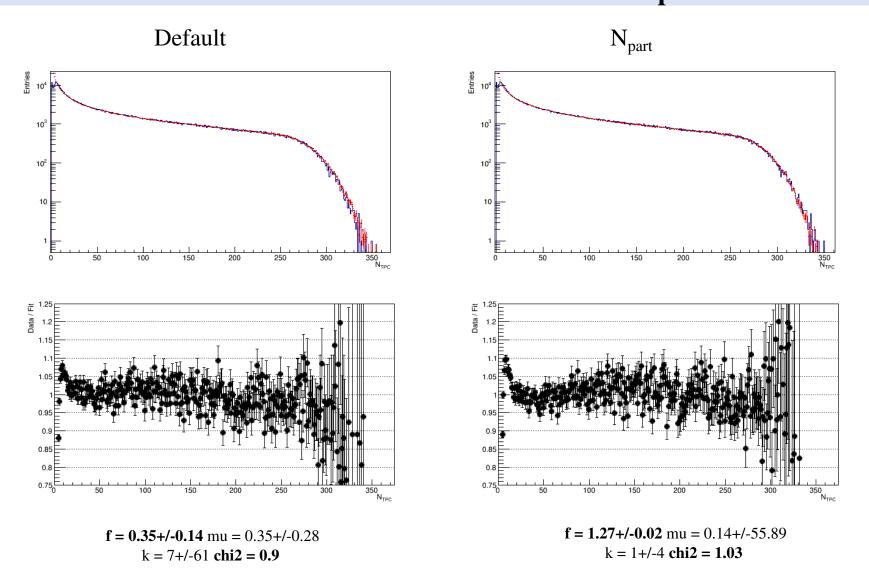
Centrality questions & answers

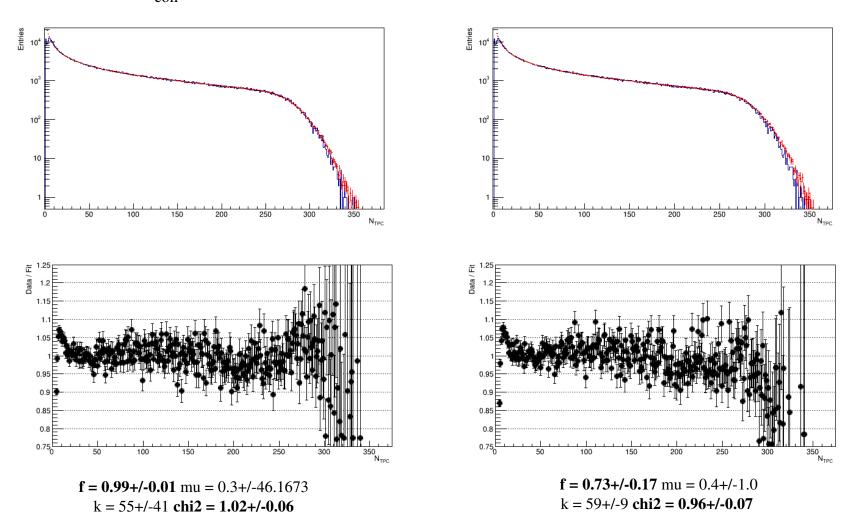
V. Riabov

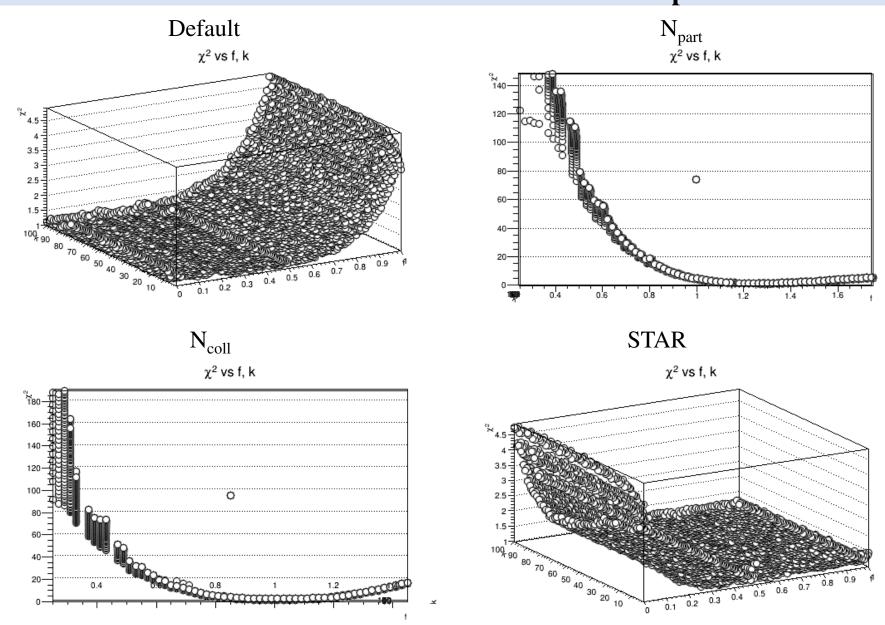

Number of ancestors

V. Riabov, Cross-PWG2Meeting, 31.01.2023

Selections

- UrQMD (Request 25 mass production)
- Event selections:
 - ✓ generated, |z-vertex| < 50 cm
 - ✓ reconstructed, z-vertex != 0
- Track cut variations:
 - ✓ nhits > 10; p_T > 0.05 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5
- Fit range: 20-340
- Centrality methods default with N_a:
 - Default : $N_a = fN_{part} + (1 f)N_{coll}$
 - PSD : $N_a = f N_{part}$
 - Npart : $N_a = (N_{part})^f$
 - Ncoll : $N_a = (N_{coll})^f$
 - STAR : $N_a = \frac{(1-f)}{2}N_{part} + fN_{coll}$.


UrQMD: Default and N_{part}


UrQMD: N_{coll} and STAR

STAR

UrQMD: Default and N_{part}

V. Riabov, Cross-PWG Meeting, 31.01.2023

UrQMD

Cent, %	Mult_min	Mult_max	∣ , fm	RMS	bmin, fm	bmax, fm	<npart></npart>	RMS	Npart_min	Npart_max	<pre> <ncoll> </ncoll></pre>	RMS	Ncoll_min	Ncoll_max
0 - 10	196	356	2.95	1.10	1.30	4.24	337.69	34.28	292.37	391.05	725.80	92.96	604.14	869.27
10 - 20		196	5.27	0.71	4.24	6.11	253.47	29.10	219.57	292.37	501.28	67.81	417.40	604.14
20 - 30		138	6.83	0.60	6.11	7.48	190.03	24.09	163.80	219.57	345.94	51.88	284.52	417.40
30 - 40		96	8.09	0.56	7.48	8.64	140.49	20.13	119.76	163.80	233.46	39.94	188.97	284.52
40 - 50		65	9.19	0.56	8.64	9.70	101.04	16.93	84.68	119.76	151.48	30.74	120.28	188.97
50 - 60		42	10.17	0.56	9.70	10.65	70.12	13.80	57.31	84.68	93.62	22.67	72.13	120.28
60 - 70	15	26	11.07	0.59	10.65	11.49	46.53	11.25	36.98	57.31	54.65	16.45	40.44	72.13
70 - 80	8	15	11.92	0.65	11.49	12.29	28.94	8.90	22.60	36.98	29.63	11.32	21.49	40.44
80 - 90	4	8	12.71	0.75	12.29	13.30	17.00	6.76	11.63	22.60	15.24	7.41	9.98	21.49
90 - 100	1	3	14.04	1.01	13.30	15.02	6.00	4.00	-0.85	11.63	4.47	3.59	-2.86	9.98
Cent, %	Mult_min	Mult_max 	, fm 	RMS	bmin, fm 	bmax, fm 	<npart> </npart>	RMS	Npart_min 	Npart_max	<ncoll> </ncoll>	RMS	Ncoll_min	Ncoll_max
0 - 10	195	351	2.91	1.09	1.31	4.18	339.91	32.51	294.97	392.43	726.13	95.97	608.06	865.59
10 - 20	136	195	5.21	0.70	4.18	6.04	256.15	27.00	222.28	294.97	507.83	76.95	424.00	608.06
20 - 30	94	136	6.76	0.60	6.04	7.42	192.77	22.37	166.39	222.28	352.96	60.62	291.46	424.00
30 - 40	63	94	8.02	0.57	7.42	8.57	142.91	18,99	122.25	166.39	239.51	47.72	195.27	291.46
40 - 50	41	63	9.11	0.55	8.57	9.62	103.48	15.96	87.01	122.25	157.24	36.47	125.52	195.27
50 - 60	25	41	10.09	0.57	9.62	10.57	72.43	13.53	59.20	87.01	98.66	27.42	76.01	125.52
60 - 70	14	25	11.01	0.60	10.57	11.44	47.90	11.26	38.03	59.20	57.58	19.59	42.67	76.01
70 - 80	7	14	11.89	0.67	11.44	12.30	29.51	9.10	22.59	38.03	30.95	13.24	22.01	42.67
80 - 90	3	7	12.76	0.79	12.30	13.34	16.58	7.03	11.10	22.59	15.14	8.42	9.59	22.01
90 - 100	1	2	14.06	1.02	13.34	14.98	5.86	3.91	0.16	11.10	4.42	3.72	-1.58	9.59
Cent,%	Mult_min	Mult_max	, fm 	RMS	bmin, fm 	bmax, fm	<pre><npart></npart></pre>	RMS	Npart_min 	Npart_max	<ncoll></ncoll>	RMS	Ncoll_min 	Ncoll_max
0 - 10	195	356	2.90	1.09	1.29	4.16	339.29	33.85	295.41	390.52	731.46	90.30	612.53	871.42
10 - 20	137	195	5.17	0.72	4.16	6.00	257.47	29.85	224.12	295.41	511.57	66.75	428.44	612.53
20 - 30	95	137	6.71	0.61	6.00	7.36	194.86	25.04	168.83	224.12	357.34	51.42	295.93	428.44
30 - 40	64	95	7.95	0.57	7.36	8.51	145.54	21.13	124.74	168.83	244.39	39.86	199.34	295.93
40 - 50	41	64	9.05	0.56	8.51	9.55	105.88	17.97	89.27	124.74	160.96	31.09	128.79	199.34
50 - 60	25	41	10.03	0.57	9.55	10.51	74.42	14.82	61.16	89.27	101.09	23.27	78.35	128.79
60 - 70	14	25	10.94	0.60	10.51	11.37	49.84	12.20	39.74	61.16	59.64	17.21	44.26	78.35
70 - 80	7	14	11.81	0.65	11.37	12.21	31.07	9.68	24.03	39.74	32.31	12.04	23.15	44.26
80 - 90	3	7	12.66	0.76	12.21	13.27	17.80	7.37	11.93	24.03	16.06	7.90	10.22	23.15
90 - 100	1	2	14.03	1.02	13.27	15.02	6.07	4.10	-0.58	11.93	4.49	3.60	-2.56	10.22
Cent, %	Mult min	Mult max	, fm 	RMS	bmin, fm	bmax, fm	<npart> </npart>	RMS	Npart min	Npart max	<ncoll> </ncoll>	RMS	Ncoll min	Ncoll max
		į												
0 - 10 10 - 20	196	356	2.92	1.09	1.31	4.19	338.75	33.94	294.10	390.84	729.45	91.14	608.80	871.44
10 20	137 95	196 137	5.22	0.72	4.19 6.05	6.05	255.56 192.42	29.59	221.94	294.10	506.67	67.23	423.10	608.80 423.10
				0.60		7.42		24.52	166.39	221.94	351.58		290.44	
	64	95	8.01	0.56	7.42	8.57	143.26	20.65		166.39	239.39	39.68	194.52	290.44
	41	64	9.11	0.56	8.57	9.61	103.73 72.44	17.46	87.23	122.43 87.23		30.79 22.97	124.94 75.41	194.52 124.94
		41	10.10	0.57	9.61	10.57		14.38	59.39		97.62			1
	14	25	11.01	0.60	10.57	11.45	48.10	11.79	38.13	59.39	57.00	16.85	42.03	75.41
70 - 80 80 - 90		14 7	11.89	0.66	11.45	12.30	29.62	9.36	22.59	38.13 22.59	30.46		21.49	42.03
80 - 90 90 - 100	3	2	12.77 14.08	0.78 1.01	12.30 13.35	13.35 15.02	16.51 5.76	7.07 3.84	11.03 0.05	11.03	14.69 4.23	7.53	9.31 -1.85	21.49 9.31
						12.0/	2./0							

Default

N_{part}

 N_{coll}

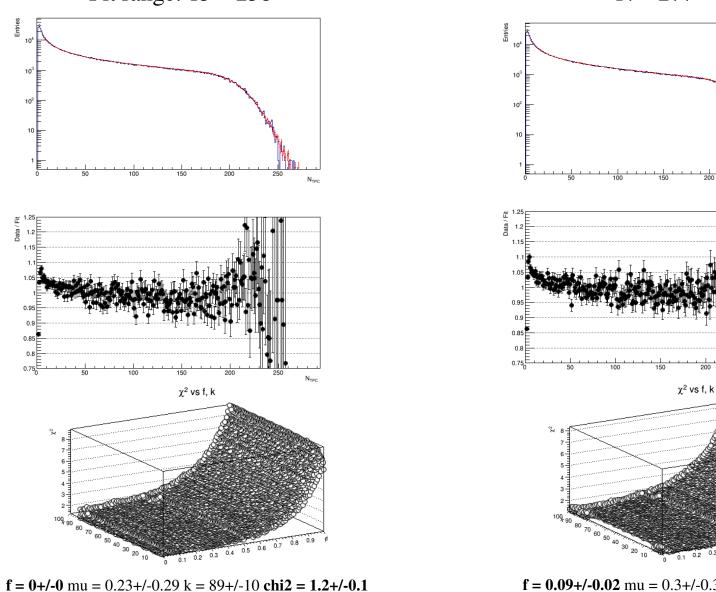
STAR

Conclusions

- Different options for N_a result in similar quality of the fits
- Different options for N_a give identical results for centrality classes in terms of N_{TPC}
- Different options for N_a give identical distributions of N_{part} , N_{coll} and b
- Why $f \rightarrow 0$ for Default option is not understood

Centrality vs. track cuts

V. Riabov, Cross-PW@Meeting, 31.01.2023


Selections

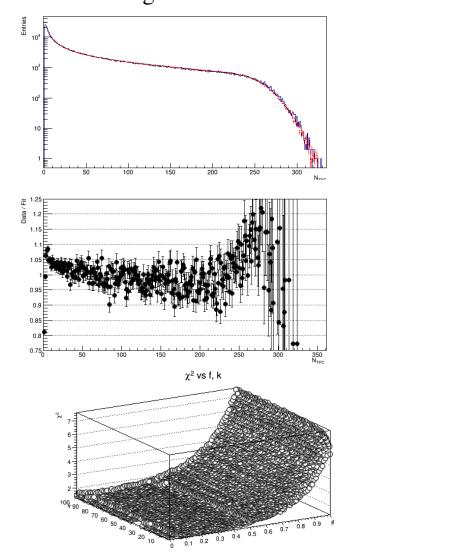
- DCM-QGSM-SMM (Request 26 mass production)
- Event selections:
 - ✓ generated, |z-vertex| < 50 cm
 - ✓ reconstructed, z-vertex != 0
- Track cut variationsT₀ resolution:
 - 1. nhits > 16; p_T > 0.15 GeV/c; DCA < 1.0 cm; $|\eta| < 0.5$
 - 2. nhits > 10; p_T > 0.05 GeV/c; DCA < 1.0 cm; $|\eta| < 0.5$
 - 3. hits > 10; p_T > 0.05 GeV/c; DCA < 2.0 cm; $|\eta| < 0.5$
 - 4. nhits > 10; p_T > 0.05 GeV/c; DCA < 3.0 cm; $|\eta| < 0.5$
 - 5. nhits > 10; p_T > 0.05 GeV/c; DCA < 4.0 cm; $|\eta|$ < 0.5
- Centrality method: default
- Fit range: $N_{min} N_{max}$, where N_{max} is defined by cuts, N_{min} is proportionally scaled

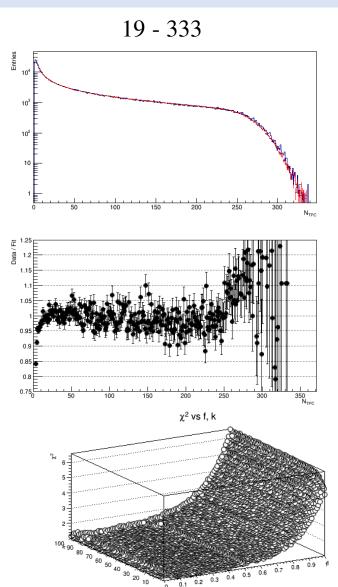
Track cuts 1, 2

Fit range: 15 – 258

0.6 0.5 **f** = 0.09+/-0.02 mu = 0.3+/-0.3 k = 49+/-11 chi2 = 1.1+/-0.1

V. Riabov, Cross-PWG Meeting, 31.01.2023

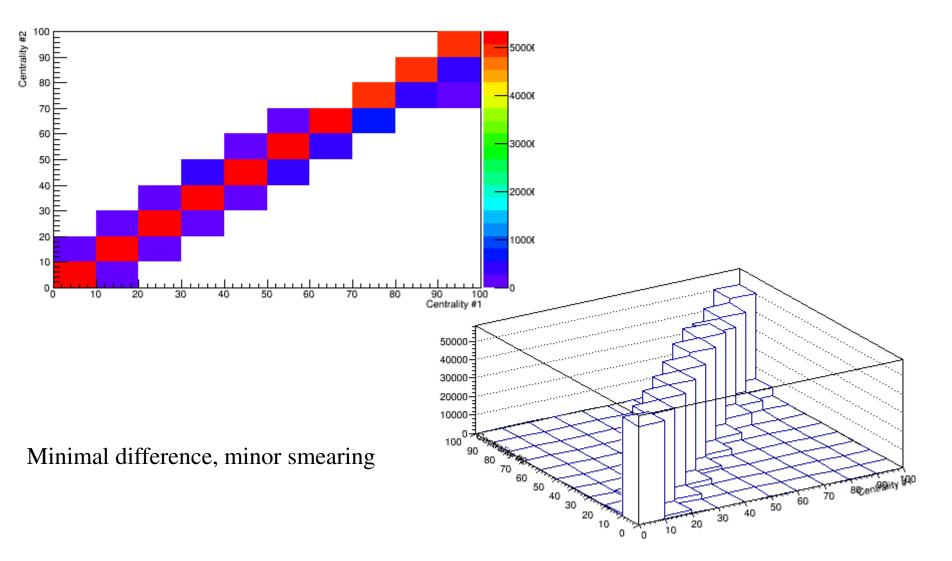

300 N_{TPC}


0.9

0.8 0.7

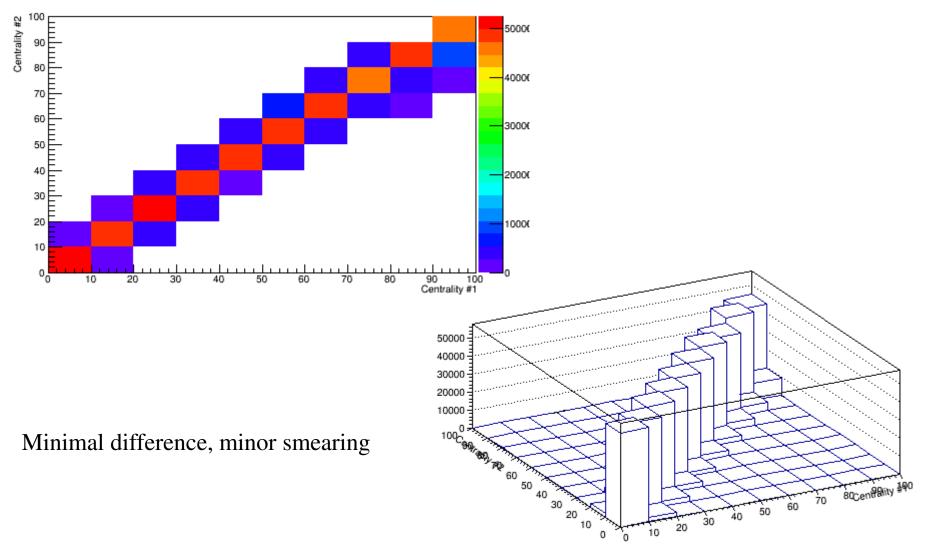
Track cuts 4, 5

Fit range: 19 – 324

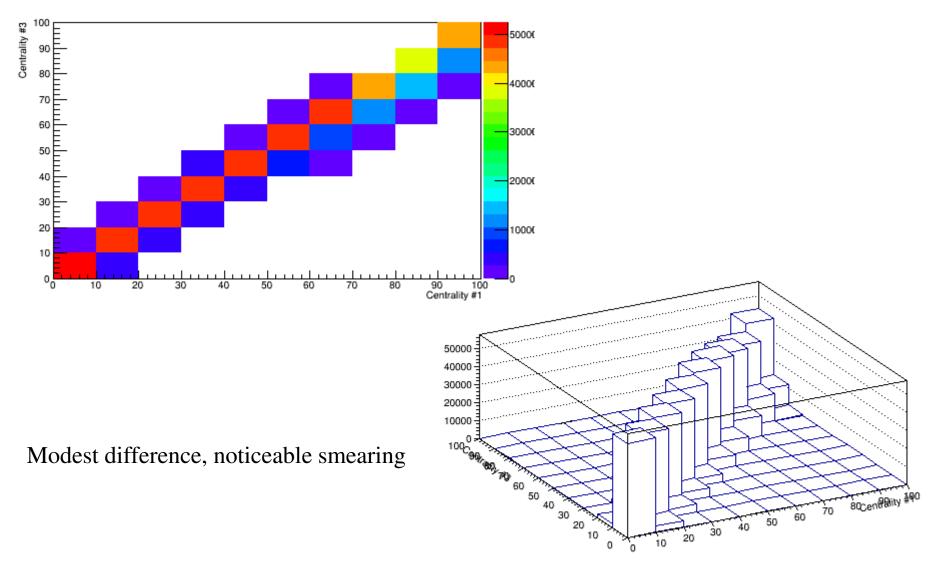


f = 0.11+/-0.03 mu = 0.3+/-0.3 k = 8+/-46 chi2 = 1.3+/-0.1

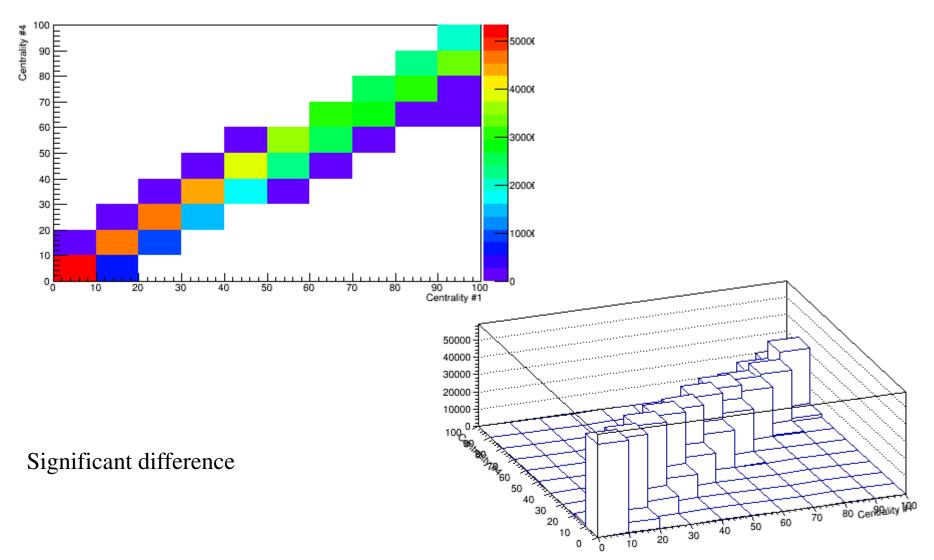
f = 0.12+/-0.1 mu = 0.3+/-0.3 k = 38+/-52 chi2 = 1.03+/-0.10


1. nhits > 16; p_T > 0.15 GeV/c; DCA < 1.0 cm; $|\eta| < 0.5$

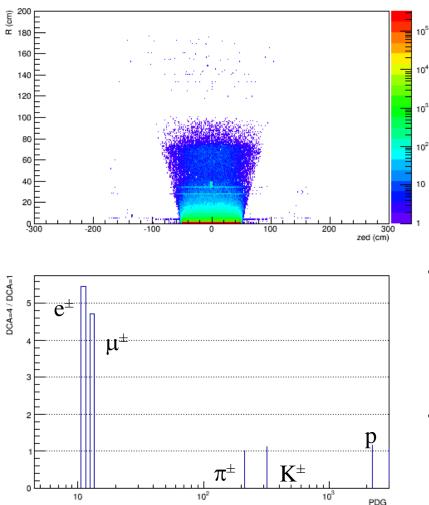
2. nhits > 10; p_T > 0.05 GeV/c; DCA < 1.0 cm; $|\eta| < 0.5$


1. nhits > 16; p_T > 0.15 GeV/c; DCA < 1.0 cm; $|\eta|$ < 0.5

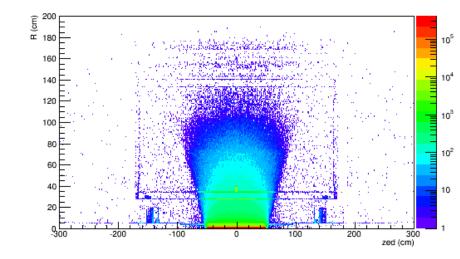
2. nhits > 10; p_T > 0.05 GeV/c; DCA < 2.0 cm; $|\eta| < 0.5$


1. nhits > 16; p_T > 0.15 GeV/c; DCA < 1.0 cm; $|\eta|$ < 0.5

3. nhits > 10; p_T > 0.05 GeV/c; DCA < 3.0 cm; $|\eta| < 0.5$


1. nhits > 16; p_T > 0.15 GeV/c; DCA < 1.0 cm; $|\eta| < 0.5$

4. nhits > 10; p_T > 0.05 GeV/c; DCA < 4.0 cm; $|\eta| < 0.5$



Origin of accepted tracks

1. nhits > 16; p_T > 0.15 GeV/c; DCA < 1.0 cm; $|\eta| < 0.5$

4. nhits > 10; p_T > 0.05 GeV/c; DCA < 4.0 cm; $|\eta| < 0.5$

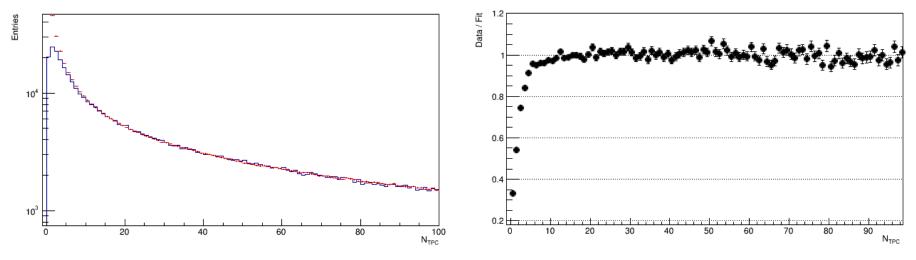
- With looser cuts we accept more conversion electrons and muons (?) produced outside of the primary vertex → correlation between initial multiplicity and impact parameter/centrality gets distorted
- With tighter cuts we reduce mean event multiplicity
 → 1) a larger fraction of peripheral events have zero multiplicity and no centrality; 2) larger fluctuations

No good or bad solutions \rightarrow need compromise !!!

Conclusions

• Optimal track selection cuts ???

nhits > 10; p_T > 0.05 GeV/c; DCA < 2.0 cm; $|\eta|$ < 0.5

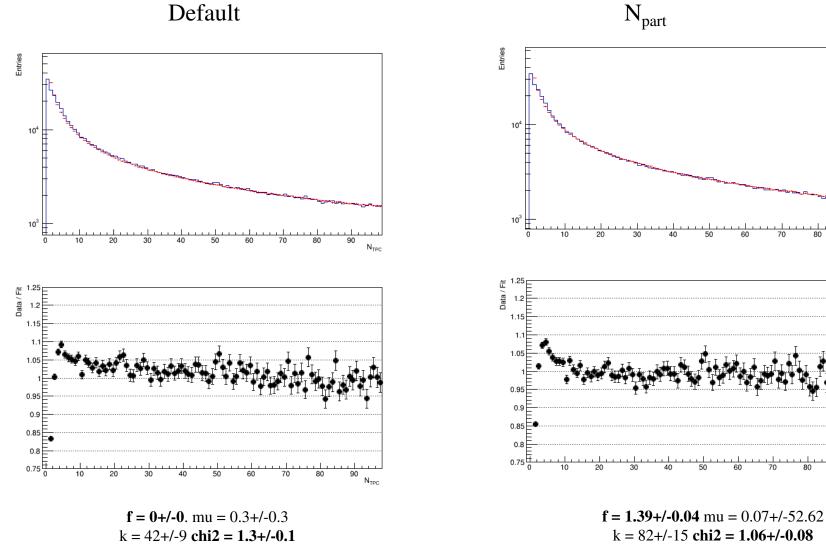

- Reasonable multiplicity, modest smearing
- Looser cuts result in smearing of correlation between multiplicity and centrality

Which of N_a models is better?

V. Riabov, Cross-PWG9Meeting, 31.01.2023

Glauber fit vs. multiplicity distribution

- In real data, Glauber fits are limited to N_{TPC} > XXX, where XXX must be large enough to guarantee that trigger efficiency has reached saturation (~ 100%)
- Ratio (data)/(fit) is used to estimate the trigger efficiency and the sampled fraction of the total inelastic cross section


- The method works under assumption that Glauber fit correctly reproduces (predicts) the unbiased multiplicity distribution at $N_{TPC} \leq XXX$
- The hypothesis can be tested with the simulated data samples by fitting the generated multiplicity distributions: trigger efficiency = const = 100%, no track selection inefficiencies → fit must reproduce the multiplicity distribution at N_{TPC} < XXX

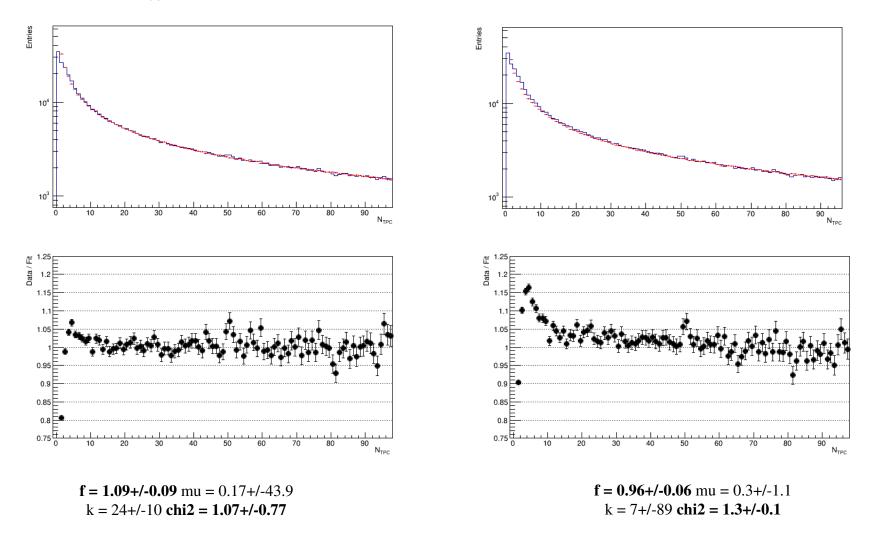
Generated distributions

- DCM-QGSM-SMM (Request 26 mass production)
- Event selections:
 - ✓ generated, |z-vertex| < 50 cm
- Track cut variationsT₀ resolution:
 - ✓ $p_T > 0.05$ GeV/c; DCAto-PV < 2.0 cm; |η| < 0.5
- Fit range: 20-329
- Centrality methods default with N_a:
 - Default : $N_a = fN_{part} + (1-f)N_{coll}$
 - PSD : $N_a = f N_{part}$
 - Npart : $N_a = (N_{part})^f$
 - Ncoll : $N_a = (N_{coll})^f$
 - STAR : $N_a = \frac{(1-f)}{2}N_{part} + fN_{coll}$.

Fits: Default and N_{part}

90 N_{TPC}

90 N_{TPC}


80

80

Fits: N_{coll} and STAR

N_{coll}

STAR

Conclusions

- Fits in general reproduce multiplicity distribution in the extrapolated region
- Default, N_{part} and N_{coll} options are nearly identical, STAR is somewhat worse