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Physical motivation

Classically, a particle in one dimension with its position q and mo-
mentum p is described by a phase space distribution PCl (q, p) . The
average of a function of the position and momentum A(q, p) can
then be expressed as

⟨A⟩Cl =

∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) PCl (q, p) .

A quantum mechanical particle is described by a density matrix
ϱ̂ and the average of a function of the position and momentum
operators Â(q̂, p̂) is

⟨A⟩QM = tr
(
Â ϱ̂

)
.

A quantum mechanical average can be expressed using a quasiprob-
ability distribution PQM(q, p) as

⟨A⟩QM =

∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) PQM(q, p) .
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Objective

Because of Heisenberg’s uncertainty principle, the function PQM(q, p)
has negative values for certain quantum states. Hence, it is not a
true probability density and is referred to as a quasiprobability dis-
tribution.

Due to this negativity property, quasiprobability distributions may
serve as a tool for understanding the interrelations between quantum
and classical statistical descriptions.

Aim of the talk:

To consider the Wigner quasiprobability distribution W (q, p) and,
specifying the notion of “classical states” as the states whose Wigner
function is non-negative everywhere in the phase space, to quantify
a state classicality.
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Wigner function

The Wigner quasiprobability distribution

W (ΩN) = tr [ϱ ∆(ΩN)]

is constructed from the density matrix (describing a quantum state)

ϱ ∈ PN = {X ∈ MN(C) | X = X † , X ≥ 0 , tr (X ) = 1}

and the Stratonovich-Weyl self-dual kernel

∆(ΩN) ∈ P∗
N = {X ∈ MN(C) | X = X † , tr (X ) = 1 , tr

(
X 2

)
= N} ,

defined over the symplectic manifold ΩN .
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Density matrix

A state of an N-level quantum system is given by the density
matrix

ϱ =
1

N
IN +

√
N − 1

2N
(α,λ) ,

whereα is (N2−1)-dimensional Bloch vector and λ = {λ1 , · · · , λN2−1 }
is su(N) algebra orthonormal Hermitian basis.

The singular value decomposition of the density matrix reads:

ϱ = U diag (r1, . . . , rN) U
† , U ∈ SU(N) ,

the spectrum {r1, . . . , rN} of the density matrix forms ∆N−1-simplex:

1 ≥ r1 ≥ · · · ≥ rN ≥ 0 ,
N∑
i=1

ri = 1 .
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For N = 2 (qubit) ∆1 : {1 ≥ r1 ≥ r2 ≥ 0 ,
∑2

i=1 ri = 1} .

For N = 3 (qutrit) ∆2 : {1 ≥ r1 ≥ r2 ≥ r3 ≥ 0 ,
∑3

i=1 ri = 1} .

For N = 4 (quatrit) ∆3 : {1 ≥ r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0 ,
∑4

i=1 ri = 1} .

N = 2 N = 3 N = 4
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State space PN

Unitary U(N) automorphism of the Hilbert space of an N-level quan-
tum system induces the adjoint SU(N)-action on state space PN :

g · ϱ = g ϱ g † , g ∈ SU(N) ,

which sets equivalence relations between elements of PN and gives
rise to its decomposition over the strata:

P[Hα] :=
{
x ∈ PN | Hx is conjugate to Hα

}
, PN =

⋃
orbit types

P[Hα] .

A subgroup Hx ⊂ SU(N) is the isotropy group of a point x ∈ PN ,

Hx = {g ∈ SU(N) | g · x = x} ,

and points x , y ∈ PN are said to be of the same type if their
stabilizers Hx and Hy are conjugate subgroups of SU(N) group.
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Stratonovich-Weyl kernel

The Stratonovich-Weyl kernel is the following:

∆(ΩN) =
1

N
IN +

√
N2 − 1

2N

∑
λs∈K

µsλs ,

K ∈ su(N) is Cartan subalgebra, real coefficients
∑N

s=2 µ
2
s2−1 = 1 .

The SVD of the Stratonovich-Weyl kernel reads:

∆(ΩN) = V diag (π1, . . . , πN) V
† , V ∈ SU(N) .

Ordering of the spectrum {π1, . . . , πN} of the SW kernel cuts out the
moduli space of ∆(ΩN) in the form of a spherical polyhedron:

π1 ≥ · · · ≥ πN ,

N∑
i=1

πi = 1 ,
N∑
i=1

π2i = N .
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For κ =
√

N(N2−1)
2 the SW kernel spectrum π may be presented as:

πi =
1

N

(
1 +

√
2κ

N∑
s=i+1

µs2−1√
s (s − 1)

− κ

√
2 (i − 1)

i
µi2−1

)
.

The conventional parameterization by N − 2 spherical angles:

µ3 = sinψ1 · · · sinψN−2 ; . . . ;

µi2−1 = sinψ1 · · · sinψN−i cosψN−i+1 ; . . . ;

µN2−1 = cosψ1 , i = 2,N ,

where for π1 ≥ · · · ≥ πN the constraints on µi are:

µ3 ≥ 0 , µ(i+1)2−1 ≥
√

i − 1

i + 1
µi2−1 , i = 2,N − 1 .
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Moduli space

For N = 2 : π1 ≥ π2 ,
∑2

i=1 πi = 1 ,
∑2

i=1 πi = 2 , so:

π1 = (1 +
√
3)/2 , π2 = (1−

√
3)/2 .

For N = 3 : π1 ≥ π2 ≥ π3 ,
∑3

i=1 πi = 1 ,
∑3

i=1 πi = 3, so:

π2 = (1− π1 +
√
5 + 2π1 − 3π21)/2 , 1 ≤ π1 ≤ 5/3 ,

or, equivalently, for µ3 = sin ζ , µ8 = cos ζ : 0 ≤ ζ ≤ π/3 .
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For N = 4 : π1 ≥ π2 ≥ π3 ≥ π4 ,
∑4

i=1 πi = 1 ,
∑4

i=1 πi = 4, so for

µ3 = sinψ1 sinψ2 , µ8 = sinψ1 cosψ2 , µ15 = cosψ1 ,

where µ3 ≥ 0 , µ8 ≥ µ3√
3
, µ15 ≥ µ8√

2
, the moduli space reads:



{
ψ2 ∈

(
0, π3

]
,

0 < ψ1 ≤ arccot
(
cosψ2/

√
2
)
;{

ψ2 = 0 ,

0 < ψ1 ≤ arccot
(
1/
√
2
)
;

ψ1 = 0 .
Quatrit moduli space as the Möbius spher-

ical triangle (2, 3, 3) on a unit sphere.
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Wigner function positivity

A family of the Wigner functions:

W (ΩN) =
1

N

(
1 +

N2 − 1√
N + 1

(n,α)

)
,

vectors n = µ3n(3)+ . . .+µN2−1n(N2−1) , n(s2−1)
µ = 1

2 tr
(
Uλs2−1U

†λµ
)
.

For r ∈ ∆N ,π ∈ spec (∆(ΩN)) , the lower bound of Wigner function

W
(−)
N =

N∑
i=1

πi rN−i+1 ≡ (r↑ · π↓) = r1πN + . . .+ rNπ1

determines the WF positivity region.

At that: W
(−)
N ≤ W (ΩN) ≤ W

(+)
N , W

(+)
N =

∑N
i=1 πi ri .
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Classical states

The “classical states” form the subset P
(+)
N ⊂ PN of states whose

Wigner function is non-negative everywhere over the phase space:

P
(+)
N = { ϱ ∈ PN | Wϱ(z) ≥ 0 , ∀z ∈ ΩN } .

The “classical states on a fixed stratum” PHα are defined as:

P
(+)
Hα

= P
(+)
N ∩PHα .

The unitary orbit space O[PN ] is the quotient space under the equiv-
alence relation imposed by the adjoint SU(N)-action on the state
space PN with quotient mapping π : PN −→ O[PN ] = PN/SU(N) .

The subset O[P
(+)
N ] = π[P

(+)
N ] = {π(x) | x ∈ P

(+)
N } represents the

image of P(+)
N under the quotient mapping π .
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Non-classicality characteristics of states

Non-classicality measures based on the violation of the Wigner func-
tion semi-positivity can be divided into different types:

1. (Global indicator of classicality) as the relative volume of a sub-

space P
(+)
N ⊂ PN of the state space PN , consisting of states

whose Wigner functions are positive:

QN =
Volume(Classical States)

Volume(All States)
,

where the Riemannian volume is calculated with respect to the
measure dictated by the probability distribution function of an
ensemble.

2. (Kenfack-Życzkowski indicator) based on the volume of a phase
space region where the Wigner function is negative:

δN =

∫
ΩN

dΩN

∣∣W (ΩN)
∣∣− 1 .
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Distance indicator of non-classicality of qudits

3. (Distance indicator of non-classicality) based on a distance D of a

state ϱ from the “classical states” P
(+)
N :

d(ϱ;P
(+)
N ) = inf

x∈P(+)
N

D(ϱ, x) ,

where states with positive Wigner functions are taken as the
reference “classical states”.

The distance on PN is assumed to be related to the Frobenious
norm: D(ϱ1, ϱ2) = ||ϱ1 − ϱ2||2 , and so

d(ϱ;P
(+)
N ) = inf

x∈P(+)
N

√
Tr (ϱ− x)2 =

√√√√ inf
xdiag∈O[P

(+)
N ]

N∑
i=1

(ri − xi )
2 .
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Qubit state

The state of a qubit is given by the density matrix

ϱ2 =
1

2
(I2 +α · σ) = U diag(r1, r2)U

† = U
1

2
(I2 + rσ3)U

† ,

where α = (α1, α2, α3) ∈ R3 is a Bloch vector, r = |α| , and σ is
the basis of su(2) algebra – the standart Pauli matrices.

Qubit SW kernel: ∆(Ω2) = V diag (π1, π2) V
† .

Qubit Wigner function lower bound: W
(−)
2 = r1π2 + r2π1 .
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Qubit non-classicality distance

Qubit Wigner function: W (Ω2) =
1
2

(
1 +

√
3 (n,α)

)
.

Qubit non-classicality distance
for Hilbert-Schmidt metric:

dϱ = θ[r − 1√
3
]
(

r√
2
− 1√

6

)
.
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Qutrit state

A generic qutrit state is given by the density matrix

ϱ3 =
1

3
(I3 +

√
3

8∑
ν=1

ανλν) = U diag(r1, r2, r3)U
† =

U
1

3
(I3 +

√
3

∑
i=3,8

ξiλi )U
† ,

where α is an 8-dimensional Bloch vector, λ = {λ1 , · · · , λ8} is
su(3) algebra basis – the Gell-Mann matrices, and coefficients ξ3, ξ8
are invariants under the adjoint SU(3) transformations of ϱ3 .

Qutrit SW kernel: ∆(Ω3) = V diag (π1, π2, π3) V
† .

Qutrit Wigner function lower bound: W
(−)
3 = r1π3+r2π2+r3π1 .
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Qutrit non-classicality distance

Qutrit Wigner function: W (Ω3) =
1
3 (1 + 4 (n,α)) .

Qutrit non-classicality distance for Hilbert-Schmidt metric:

dϱ =



0 , if ξ3, ξ8 ∈ △OQR ,√
ξ23 +

(
ξ8 − 1

4 cos(ζ−π
3 )

)
2 , if ξ3, ξ8 ∈ △AQT ,

ξ3 cos
(
ζ + π

6

)
+ ξ8 sin

(
ζ + π

6

)
− 1

4
, if ξ3, ξ8 ∈ □QRST ,√(

ξ3 −
√
3

8
sec(ζ)

)
2 +

(
ξ8 − sec(ζ)

8

)
2 , if ξ3, ξ8 ∈ △BRS .

Qutrit ∆2-simplex with WF positivity boundary and non-classicality distance (ζ = π
6
):
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Results

The distance indicator of non-classicality d(ϱ;P
(+)
N ) constructed out

of the quasiprobability distributions was calculated for low-dimensio-
nal quantum systems.

One can also describe qutrit states
that are equally distant from the
classical states: d(ϱ;P3) = C .
Equal distant non-classical states
comprise the line parallel to the sep-
arating one (r↑ · π↓) = 0 .

0

0.2

0.4

0.6

Thank you!
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