

Joint Institute for Nuclear Research

JINR Container Distribution Service

Nikita Balashov

The 9th International Conference "Distributed Computing and Grid Technologies in Science and Education" (GRID'2023)

7 July 2023

Containers Usage in HEP

- Major motives
 - Reproducibility
 - Portability
 - Support efforts
- Uses-cases
 - Batch job processing on local clusters, Grid and supercomputers
 - CI/CD pipelines
 - Interactive computing systems and personal machines

Base images

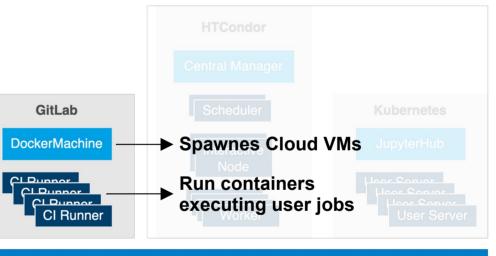
Size: Megabytes

Bare OS, may include lightweight infrastructure tools

Experiment images

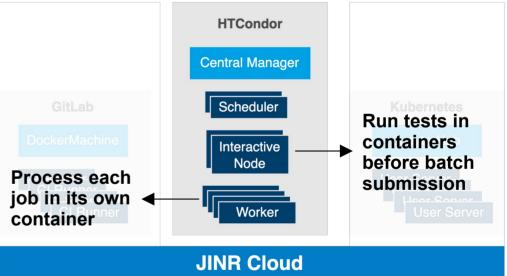
Size: Gigabytes

Includes all the software stack

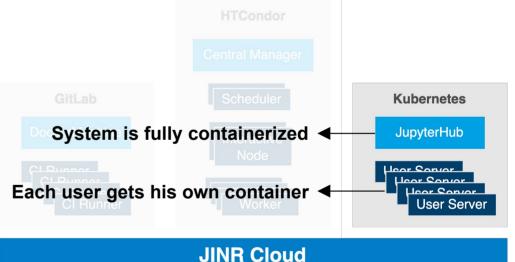

User images Size: Gigabytes

Usually, based on experiments images including small user additions

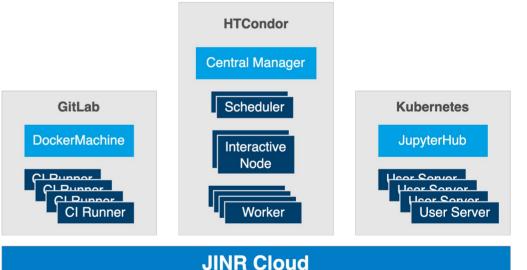
• CI/CD jobs in GitLab:


- Docker/DockerMachine
- Runners are VMs dynamically spawned in JINR Cloud
- HTCondor batch cluster:
 - Apptainer/Singularity (Docker supported, but not widely used)
 - User job are executed in containers
- JupyterHub:
 - Kubernetes/Docker
 - Modified Datascience-notebook image from Jupyter Notebook Data Science Stack for running user servers
- Interactive usage of Docker and Apptainer containers on personal devices and cloud VMs

JINR Cloud

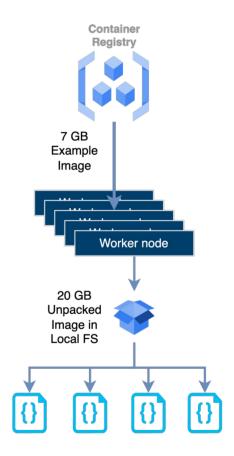

• CI/CD jobs in GitLab:

- Docker/DockerMachine
- Runners are VMs dynamically spawned in JINR Cloud
- HTCondor batch cluster:
 - Apptainer/Singularity (Docker supported, but not widely used)
 - User job are executed in containers
- JupyterHub:
 - Kubernetes/Docker
 - Modified Datascience-notebook image from Jupyter Notebook Data Science Stack for running user servers
- Interactive usage of Docker and Apptainer containers on personal devices and cloud VMs



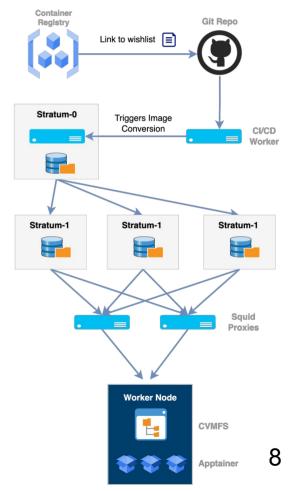
• CI/CD jobs in GitLab:

- Docker/DockerMachine
- Runners are VMs dynamically spawned in JINR Cloud
- HTCondor batch cluster:
 - Apptainer/Singularity (Docker supported, but not widely used)
 - User job are executed in containers
- JupyterHub:
 - Kubernetes/Docker
 - Modified Datascience-notebook image from Jupyter Notebook Data Science Stack for running user servers
- Interactive usage of Docker and Apptainer containers on personal devices and cloud VMs



- CI/CD jobs in GitLab:
 - Docker/DockerMachine
 - Runners are VMs dynamically spawned in JINR Cloud
- HTCondor batch cluster:
 - Apptainer/Singularity (Docker supported, but not widely used)
 - User job are executed in containers
- JupyterHub:
 - Kubernetes/Docker
 - Modified Datascience-notebook image from Jupyter Notebook Data Science Stack for running user servers
- Interactive usage of Docker and Apptainer containers on personal devices and cloud VMs

Container Distribution


- Container images can be large and versioned, e.g. borexino-ui:
 - In registry: ~7 GB
 - Unpacked on the worker: ~20 GB
- · Images are traditionally stored in so called registries
 - At JINR we use GitLab Registry (S3 backed with Ceph)
- Main challenges:
 - Images need to be synced to hundreds of nodes posing huge load on image storage and network
 - Client storage is usually limited and needs to be reclaimed when an image is not used

Containerized User Jobs

HEP Approach Based on CVMFS

- Traditional registries are used to store docker images
- Images are listed in a GitHub/GitLab project
- CI jobs unpack images and store them in CVMFS repository
- Clients run containers from CVMFS "folders"
 - Lazy loading with per file level of caching granularity
 - Automatically reclaims storage space
- Apptainer is natively supported
- Some experimental support of Docker, containerd and Podman

Available Solutions

2

4

5

6

7

8

1 2

3

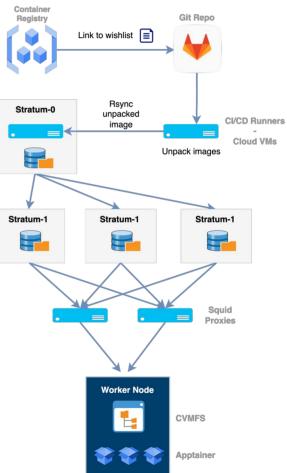
- Solution from CERN
 - Public image list on GitHub: https://github.com/cvmfs/imagesunpacked.cern.ch
 - Private image list on CERN GitLab
 - CVMFS DUCC used for image conversion and publishing
 - CVMFS repository: unpacked.cern.ch
- Solution from Open Science Grid (OSG)
 - Public image list on GitHub: https://github.com/opensciencegrid/cvmfs-singularity-sync
 - Custom set of python scripts to convert and publish images
 - CVMFS repository: singularity.opensciencegrid.org
- · Restrictions of self-hosted installations
 - CVMFS server needs docker installed and running
 - Escalated privileges on the CVMFS server for publisher
 - Increased load on CVMFS server when no additional publishers available

CERN Wishlist

- 1 version: 1
 - user: cvmfsunpacker
- 3 cvmfs_repo: 'unpacked.cern.ch'
 - output_format: 'https://gitlab-registry.cern.ch/unpacked/sync/\$(image)'

input:

- 'https://registry.hub.docker.com/library/centos:centos7'
- 'https://registry.hub.docker.com/engineren/ilcsoft:test'
 - 'https://registry.hub.docker.com/uegede/weather:latest'


OSG Wishlist

This file is a list of Docker images to synchronize to singularity.opensciencegrid.org.

- 4 # First, some generic CentOS images:
- 5 centos:latest
- 6 centos:centos6
- 7 centos:centos7
- 9 # Fairly common Linux distros
- 10 debian:latest
- 11 debian:stable
- 12 debian:testing
- 13 debian:unstable
- 14 ubuntu:latest
- 15 fedora:latest
- 16 rockylinux:8

JINR Solution

- Based on modified OSG software
- Does not require any additional CVMFS server configuration and privileges
- Conversion can be executed on CI/CD nodes
- Containers are stored in containers.jinr.ru cvmfs repo via https://git.jinr.ru/cvmfs-container-sync/registry
- Solution can be used to setup private conversion service to any private repository

Conclusions

- Public moderated services from OSG and CERN can be used by to distribute containers via CVMFS
- Presented JINR Container distribution service can be used by JINR employees and participating parties
- JINR solution can also be used as an example to organize a personal publishing service
- Implemented solution is only suitable for Apptainer/Singularity, but we plan to experiment with support of other runtimes

Thanks!