DSLAB FAAS: FAST AND ACCURATE SIMULATION OF FAAS CLOUDS

GRID'23

YURY SEMENOV 1
OLEG SUKHOROSLOV 2

¹MIPT ²IITD D

²IITP RAS

FUNCTION-AS-A-SERVICE

PLATFORMS

Commercial

- AWS Lambda
- Microsoft Azure Functions
- Google Cloud Functions
- Alibaba Cloud Function Compute
- Huawei Cloud Functions

Open-Source

- OpenWhisk
- OpenFaaS
- **■** Fission
- Kubeless
- Knative

CHALLENGES

- Cold starts
- Function interference
- Resource utilization

COMPETITORS' PROBLEMS

OpenDC 2.0 FaaS

- Poor host-level modeling
- Supports own trace format only
- High memory usage

FaaS-Sim

- Tailored to Edge FaaS
- No builtin support for common trace formats
- Slow

ARCHITECTURE

PERFORMANCE BENCHMARKS

- 30 apps from Microsoft Azure workload
- 1 day
- Balanced and skewed workload patterns
- Load varied from 10 to 60 RPS (requests per second)
- Median of 7 runs

BALANCED WORKLOAD

BALANCED WORKLOAD

8 | 13

SKEWED WORKLOAD

9 | 13

MEMORY USAGE

REPRODUCIBILITY: SCALING

REPRODUCIBILITY: SCHEDULERS

CONCLUSION

- We developed DSLab FaaS a novel framework for simulating FaaS platforms
- We proved DSLab's superiority to competitors in terms of performance by conducting computational experiments
- We proved DSLab's accuracy by reproducing relevant research

Thank you!

contact: yusemru@gmail.com