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The Channeling Effect
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Figure 1: (a) Scattering on atomic string. (a) Axial channel potential. (c) Schematic representation of

the channeling effect.
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The Classical Channeling of Electrons

Classical Patterns in
Quantum Rainbow

Channeling
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Figure 2: (a), (b) Spatial and angular trajectories of 255-MeV electron beam in planar channels (220) of

Si crystal. The black dotted lines show corresponding caustics. (c), (d) The corresponding transmission
functions.




The Quantum Channeling of Electrons R

Channeling

Channeling of quantum particles is governed by the Schrédinger equation M. Cosic
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The initial electron state is represented by a Gaussian wave packet [, et

The channel

The classica

Electron state in the angular representation is given by the integral
The numerical simulation
The self-interference
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Figure 3: Evolution of the 255-MeV quantum state having b = da20/3 in the (a) spatial and (b)
angular representations. The dashed lines show boundaries of (220) channels. The dot-dashed lines show
the corresponding classical trajectories.




The Probability Densities of Electron Beam

The probability densities of ensemble of noninteracting particles
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Figure 4: The probability density of the 255-MeV electron beam for Q = 0.250, in (a) spatial and (b)
angular representations. Full and dashed lines show classical caustics and boundaries of (220) channels,
respectively.
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The Probability Densities of Electron Beam
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Figure 5: The probability density of the 255-MeV electron beam for = 0.03©.. in (a) spatial and (b)

angular representations. Full and dashed lines show classical caustics and boundaries of (220) channels,
respectively.
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Wigner function in the (z,0,) phase space is defined by the following integral M. Cosic
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Figure 6: Wigner function for (a) A = 0.5 and (b) A = 5.The thin lines show the corresponding
semiclassical catastrophic manifold. Dashed lines indicate boundaries of the planar channels (220).
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» The classical dynamics electrons can be
efficiently simulated using Runge-Kutta
method of the 4th order.

The classic

» Distributions of the channeled beam can
obtained by easily parallelized Monte-Carlo
simulation.

The numerical simulatior

The self-ins

Distrib

The phase

» The quantum dynamics can be obtained
accurately using Chebyshev method of
global propagation.

Conclusions

» Efficiency of the calculation can be in-
creased by the Task parallelism where the
master thread executes the Chebyshev it-
eration, while slaves accumulate results to
get time evolution of the quantum state.

Pafnuty Chebyshev (4. May

o 1821 - 26. December 1894).
» The dynamics in the phase space can be

obtained efficiently if Wigner transform is
implemented using CZT transform.

» The results show that quantum-classical
transition can emerge on the level of the
ensemble without the need for wave pack-
ets to transform into mass points.




	Introduction
	The Channeling Effect
	The Classical Caustic Pattern

	The Quantum Channeling Effect
	The Numerical Implementation
	The Self-interference of Electrons 
	Distributions of Channeled Electron Beam
	The Quantum Dynamics in the Phase Space

	Conclusions

