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The Channeling Effect
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Figure 1: (a) Scattering on atomic string. (a) Axial channel potential. (c) Schematic representation of
the channeling effect.
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The Classical Channeling of Electrons

Hamilton’s equations are solved by Runge-Kutta method of 4th order
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∑
s

csFs
(
x(n), kzθ

(n)
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)
,

with the initial conditions x(0) = x(0) = b, and θx(0) = θ
(0)
x = 0.
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Figure 2: (a), (b) Spatial and angular trajectories of 255-MeV electron beam in planar channels (220) of
Si crystal. The black dotted lines show corresponding caustics. (c), (d) The corresponding transmission
functions.
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The Quantum Channeling of Electrons

Channeling of quantum particles is governed by the Schrödinger equation

i~∂tψ(x, t) = −
~2

2mr
∂2
xψ(x, t) + V (x)ψ(x, t).

Propagator Û(t) = exp[−iĤt/~] is expanded in the basis of the Chebyshev
polynomials Tn

ψ(t) = Û(t)ψ0 ≈ e−
i
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2
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(Ĥ − Ē).

where ∆E = EM − Em, Ē = (EM + Em)/2. At the boundaries of computa-
tional domain absorptive potential is used

Vabs(x) =

{
i V0
cosh2[α(|x|−xmax)]

, |x| ≥ xmax,

0, |x| < xmax.

Main iteration of the method becomes

ψn = 2Ĥψn−1 − ψn−2,→ ψn = e−γ
(

2Ĥψn−1 − e−γψn−2

)
,

where γ(x) = −iVabs(x).
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The Electron’s Self-Interference

The initial electron state is represented by a Gaussian wave packet

ψb(x) =

√
N
(
b,

1

2kzΩ

)
.

Electron state in the angular representation is given by the integral

ϕb(θx) =

√
kz

2π

∫
ψb(x)e−ikzθxx dx, ϕb ∼ FFTW [ψb] .
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Figure 3: Evolution of the 255-MeV quantum state having b = d220/3 in the (a) spatial and (b)
angular representations. The dashed lines show boundaries of (220) channels. The dot-dashed lines show
the corresponding classical trajectories.
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Introduction

The channeling effect

The classical caustics

Quantum channeling

The numerical simulation

The self-interference

Distributions of electrons

The phase space dynamics

Conclusions

The Probability Densities of Electron Beam

The probability densities of ensemble of noninteracting particles

ρx(x) =
1

d220

d220/2∫
−d220/2

|ψb(x)|2 db, ρθx (θx) =
1

d220

d220/2∫
−d220/2

|ϕb(x)|2 db.
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Figure 4: The probability density of the 255-MeV electron beam for Ω = 0.25Θc in (a) spatial and (b)
angular representations. Full and dashed lines show classical caustics and boundaries of (220) channels,
respectively.
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The Probability Densities of Electron Beam

or canonical diffraction patterns, depending on the value of the angular diver-
gence of the electron beam Ω.
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Figure 5: The probability density of the 255-MeV electron beam for Ω = 0.03Θc in (a) spatial and (b)
angular representations. Full and dashed lines show classical caustics and boundaries of (220) channels,
respectively.
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M. Ćosić
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Channeling in the Phase Space

Wigner function in the (x, θx) phase space is defined by the following integral

W (x, θx) =
kz

2π
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]
.
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Figure 6: Wigner function for (a) Λ = 0.5 and (b) Λ = 5.The thin lines show the corresponding
semiclassical catastrophic manifold. Dashed lines indicate boundaries of the planar channels (220).
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Conslusions

I The classical dynamics electrons can be
efficiently simulated using Runge-Kutta
method of the 4th order.

I Distributions of the channeled beam can
obtained by easily parallelized Monte-Carlo
simulation.

I The quantum dynamics can be obtained
accurately using Chebyshev method of
global propagation.

I Efficiency of the calculation can be in-
creased by the Task parallelism where the
master thread executes the Chebyshev it-
eration, while slaves accumulate results to
get time evolution of the quantum state.

I The dynamics in the phase space can be
obtained efficiently if Wigner transform is
implemented using CZT transform.

I The results show that quantum-classical
transition can emerge on the level of the
ensemble without the need for wave pack-
ets to transform into mass points.

Pafnuty Chebyshev (4. May
1821 - 26. December 1894).
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