
spbu.ru

Computational real time simulation,

decomposition of mathematical models with

algorithms of interactive control and

visualization

Alexander Degtyarev, Vasily Khramushin
a.degtyarev@spbu.ru, khram@mail.ru

Saint Petersburg State University

5 July 20231

mailto:khram@mail.ru

Direct simulation of physical phenomena

2

Points for direct simulation.

1. Increased computing power

2. Possibility of a comprehensive description of the phenomenon, if its

physics is known; application of fundamental conservation laws

3. Possibility of virtual testbed organization – virtual computational

environment where natural processes, external excitations, technical

objects are simulated

4. Possibility to provide wide possibilities of modeling: object parameters,

external conditions, extreme scenarios, etc.

Direct simulation of physical phenomena

3

Merits of direct simulation.

1. No scale effect in model experiments

2. Accurate knowledge of environment state and characteristics of

discovered objects

3. Any experimental conditions, including extreme ones, or those that

cannot be reproduced under the conditions of a model experiment

4. Significant difference in the cost of organizing and conducting an

experiment

Direct simulation of physical phenomena

4

Problems of direct simulation.

1. Direct simulation is not just computation

2. As any experiment, it imposes

1. Planning

2. Control

3. Interaction

4. Recording

3. Additional needs to models and algorithms

Interactive control and visualization of the direct simulation process

Components of direct simulation

5

1. Solution decomposition by physical processes in mathematical

representation

2. Multi-window graphical visualization toolkit independent of the computing

environment

3. Time synchronization system with interactive control of computational

model parameters

1. Mathematical modeling itself

2. Automatic control

3. Graphical visualization of results

Application

6

Conditionally expected graphics Purely nonlinear wave and

corpuscular models of

mechanics

Integrated models of ship hydromechanics

in storm maneuvering

Outline

7

Defining the range of tasks to be solved.

1. Designing and staging a direct computational simulation

1.1. Differential models or finite volume methods

1.2. Small spatial differences and time increments

1.3. Non-stationary spatial phenomena in time domain

2. Decomposition of computational processes and computer architecture

2.1. Establishing resource-intensive nonstationary processes

2.2. Real-time applications or engineering tasks

3. Examples and peculiarities of research and application problems

3.1. Corpuscular mechanics and storm hydromechanics of a ship

Software tools 1

8

Algorithmic problem statement

Two variants of direct simulation.

А. Resource-intensive computing process is optimized only for maximum

efficiency and computation speed.

а.1. The number of graphic and control procedures, which can be suspended

as needed, is reduced.

B. Direct computational simulation with realization of complex physical and

mathematical models in real time.

b.1. Numerical arrays are optimized to describe the simulated objects and the

surrounding continuous environment.

b.2. Interactive control options are expanding.

Software tools 2

Decomposition of computational processes by execution time

Given the multi-threaded execution of mathematical models themselves,

breaking the computational process is fundamentally impossible,

however, each clock cycle of a computational simulation can be

limited to a relatively small quantum of time.

1. Variant А – graphical operations with interactive control are performed

at moments of suspension of execution of key mathematical models.

2. Variant В – all operations are executed in parallel by using

independent interval timers in parallel computing threads.

9

Software tools 3

Variant А – single flow of execution, control and visualization.

Separation of procedures in successive quanta of time

long WaitTime(

long wait, // delay for independent interrupt processing

bool(*inFree)() = null, // free function of the computational experiment

long work = 0); // control time to execute the calculation cycle [ms]

Examples:

WaitTime(wait) – Sleep function analog (ms) with processing of interactive requests

WaitTime(wait, inFree) – math model call inFree with time interval ms

WaitTime(wait, inFree, work) – cyclic startup with time-controlled execution with pause for

control queries and presentation of results.

WaitTime – creates a continuous cycle of the computational experiment, time intervals can be

reconfigured by exiting the cycle InFree()=false.

10

Software tools 4

Variant А – time samples to optimize and accelerate calculations

long StartTime, // computer start time of the whole program

RealTime, // current execution time of the inFree procedure within WaitTime

GetTime(), // query the exact time in milliseconds (GetTickCount)

ElapsedTime(); // querying the program runtime(msec)

Depending on the performance of the computer's CPU, to create comfortable

conditions for interactive control and obtain a relatively smooth frame-by-

frame sweep without affecting the computational experiment, it is

necessary to dynamically adjust the parameters of the control procedure

WaitTime(wait,inFree(),work).

11

Software tools 5

Variant А – interactive experiment control queries

byte Window::WaitKey() // stop and waiting of new symbol from keyboard

byte Window::GetKey() // querying and selecting a symbol without stopping the program

byte Window::ScanKey() // symbol polling without stopping and without sampling from the

queue

byte Window::ScanStatus() // getting associated keys code from buffer

Instead of the usual system prompts to the keyboard, it is possible to bind the

main loop of interactive requests to a specific graphical window.

Thus, the simplest version of the software environment for the computational

experiment is implemented. It is possible to dynamically adjust the speed

of calculations.

12

Software tools 6

Variant В – parallel threads for mathematical modeling, graphical visualization

and interactive control.

1. The real-time experiment must initially corresponds the performance of

the computer in terms of the amount of computation.

2. Taking into account the need to work in an environment with many

heterogeneous interrupts, it is possible to use object-oriented

programming methods using virtual procedures to speed up

development..

3. Interrupt handling is partly formalized, however, in OOP, it is advisable for

the developer to have an open Window-Place code for choosing

procedural "inheritances", or modifying it.

13

Software tools 7

Variant B – interval timer in OpenGL environment.

virtual Window& Window::Timer() // virtual procedure for timer processing

Window& Window::SetTimer(msec, bool(*inFree)()=null) // interval and transaction

Window& Window::KillTimer() // timer reset

The use of the interrupt tool when calling free transactions inFree (), and in

reverse sequences of calls over Virtual, allow you to automate the

recovery of the graphical context of OpenGL.

1) Using virtual multiplies the program's executable code due to the automatic involvement

of a huge library LibStd++

14

Software tools 8

Variant В – similar processing of interrupts from external devices.

virtual Place& Place::Draw() // virtual procedure of image update

virtual Place& Place::Mouse(x,y) // motion in the field of graphical area

virtual Place& Place::Mouse(state, x,y) // reaction when the cursor keys are pressed

virtual bool Window::KeyBoard(byte) // virtual procedure input from keyboard

Place& Place::Draw(bool(*inDraw)()) // reference to the external rendering process

Place& Place::Mouse(bool(*inPass)(int,int)) // external processing

Place& Place::Mouse(bool(*inPush)(int,int,int)) // interrupt from mouse

Window& Window::KeyBoard(bool(*inKey)(byte)) // registration of a free interrupt

handling module to respond to keyboard input of commands or data.

Derived class Place – rectangular fragment inside the Window

15

Contraction of computational simulation

1 – Continuum-corpuscle kinematics;

2 – Wave dynamics;

3 ~ Ship hydrodynamics in heavy sea.

Algorithms variants :

1 – research of 3D models of tensor mathematics;

2 + algorithms of nonstationary and nonlinear wave dynamics;

3 = synthesis of numerical models in ship hydromechanics in heavy sea.

16

Continuum-corpuscle kinematics

1 – research on numerical models of three-dimensional tensor mathematics

17

Algorithms of nonlinear wave hydrodynamics

18

18

Progressive – wind waves

Extremely high waves

Extremely standing wavesConstg
V

W  


··
2

· 2

Bernoulli's law for pressure and

velocity in a stream of water flow

Computational simulation development

~ synthesis of numerical

models in ship

hydromechanics in

heavy sea.

The text console is used, and

only in it you can output

information from the

independent block of

execution of mathematical

models.

19

Computational simulation development 2

~ Video-graphics

+ characteristics setting,

ship propulsion and

maneuvering control.

On the graphs: heaving, rolling

and pitching, inside the hull

constant and variable centers,

stability parameters…

20

Computational simulation development 3

Group structure of

intensive trochoidal

waves.

The second graphical

window shows ship

behavior in heavy sea. It

permits to maneuver

between wave crests with

different speeds and

courses

21

Conclusion

1. The minimum necessary tools for controlling a direct

computational simulation are presented

2. The requirements for designing a direct computing simulation

based on the architecture of high-performance computing

system are formulated

3. Versions of direct and virtual interactive interfaces based on

parallel architecture and OpenGL graphics environment are

proposed

4. Examples of application of new tools for problem solution

environment (PSE) development are presented

22

Thanks for attention

23

