

Востокин С.В.

Самарский национальный исследовательский университет имени академика С.П. Королева

ИССЛЕДОВАНИЕ ПРИМЕНИМОСТИ
МЕТОДА НА ОСНОВЕ ЖУРНАЛА СОБЫТИЙ ДЛЯ
ОРГАНИЗАЦИИ ОТКАЗОУСТОЙЧИВЫХ
САМОБАЛАНСИРУЮЩИХСЯ ВЫЧИСЛЕНИЙ

10-я международная конференция «Распределенные вычисления и Grid-технологии в науке и образовании» (GRID'2023)

ЛИТ им. М.Г. Мещерякова, ОИЯИ, г. Дубна, 3 – 7 июля 2023 года

1. Мотивация исследования.

2. Особенности исследуемой архитектуры распределенного приложения:

- «традиционная» архитектура приложения многозадачных вычислений;
- архитектура для многозадачных вычислений на основе журнала событий;
- преимущества исследуемой архитектуры.

3. Вычислительные эксперименты:

- модельная задача;
- имитационный эксперимент с использованием Templet SDK;
- нагрузочный тест с использованием Templet SDK и платформы Everest.

4. Заключение, перспективы.

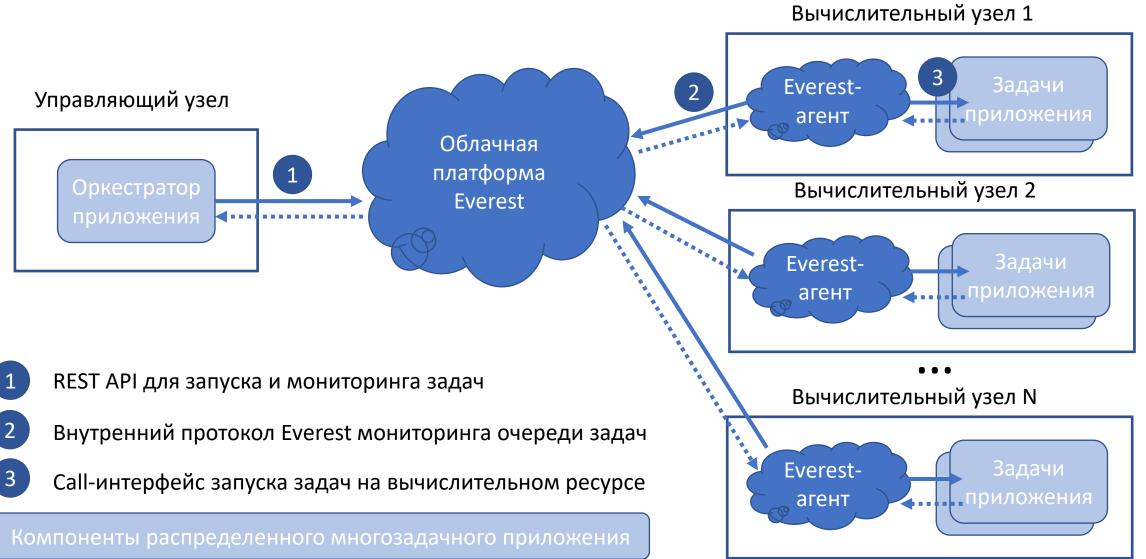
(S)

МОТИВАЦИЯ ИССЛЕДОВАНИЯ

В связи с ростом объема вычислений (**AI**, big data, computer simulation) возникает необходимость в программах, способных развертываться и исполняться на гибридных окружениях, состоящих из произвольной совокупности неспециализированных (non dedicated) сетевых вычислительных ресурсов.

- □ **Компьютеры добровольцев**, как в проекте BOINC или в других проектах добровольных распределенных вычислений.
- □ Временно простаивающие корпоративные компьютеры, которые потенциально доступны по сети для решения производственных вычислительных задач.
- □ Временно свободные вычислительные узлы суперкомпьютерных или кластерных систем большой производительности.
- □ Бесплатные или недорогие виртуальные машины (**spot virtual machines**), предоставляемые облачными провайдерами.

Примеры рассматриваемых сетевых ресурсов



Применение гибридных окружений позволяет уменьшить себестоимость вычислений, добиться их высокой производительности. Ключевые проблемы программирования приложений для гибридных окружений: отказоустойчивость, балансировка нагрузки.

В силу специфики гибридного окружения приложение, а не его вычислительное окружение (например, облако за счет виртуализации оборудования), должно самостоятельно решать обозначенные проблемы

ТРАДИЦИОННАЯ АРХИТЕКТУРА РАСПРЕДЕЛЕННОГО ПРИЛОЖЕНИЯ (на базе ППО Everest ИППИ РАН)

ИССЛЕДУЕМАЯ АРХИТЕКТУРА НА ОСНОВЕ ЖУРНАЛА СОБЫТИЙ (на базе ППО Everest ИППИ РАН)

ПРЕИМУЩЕСТВА ИССЛЕДУЕМОЙ АРХИТЕКТУРЫ ПЕРЕД «ТРАДИЦИОННОЙ»

С точки зрения организации вычислений

- □ Удобство оперативного развертывания компонентов SPMD-приложений на неспециализированных вычислительных ресурсах (не требуется агент ресурса).
- □ Лучшая отказоустойчивость, возможность динамической миграции кода приложений с узла управления журналом событий (за счет копирования файла журнала событий).

С точки зрения развития комплекта разработки Templet SDK

- □ Использование более простой и распространенной в коммерческих приложениях логики брокера сообщений вместо логики задач (запись и чтение журнала событий).
- Архитектура с журналом событий удобнее для интеграции со сторонним кодом.
- Архитектура является «блокчейн совместимой».

\$

МОДЕЛЬНАЯ ЗАДАЧА

Имеется:

произвольное количество независимых задач (в экспериментах изменяется от 10 до 50 штук с шагом 10 штук), решаемых в 10 процессах;
 для каждого процесса определен некоторый случайный порядок, в котором он будет решать задачи;
 определено время вычисления одной задачи (в экспериментах изменяется от 10 до 50 секунд с шагом 10 секунд).

Требуется:

- решить каждую задачу хотя бы в одном процессе;
- чтобы все процессы договорились о едином порядке, в котором будут получены решения задач с использованием журнала событий;
- найти ускорение вычисления задач 10-ю процессами при условии отсутствия коммуникационных издержек;
- найти ускорение вычислений задач 10-ю процессами при наличии коммуникационных издержек.

УСЛОВИЯ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

Имитационный эксперимент.

- ☐ Имитационная модель реализована с использованием пакета Templet SDK.
- ☐ Язык реализации C++, Cling.
- □ Среда ноутбук JupyterLab, развертывание в облаке через сервис Binder.

Нагрузочный эксперимент.

- ¬ Язык реализации С++, GCC.
- □ Промежуточное программное обеспечение платформа Everest ИППИ РАН.
- □ Связь с платформой Templet SDK (через libcurl, Everest REST API).
- Развертывание на виртуальной спот-машине (OVHcloud) через сервис Binder.

Процесс журнала событий и вычислительные процессы развернуты на одной виртуальной машине для создания потенциально наибольшей нагрузки на коммуникационную систему.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ: УСКОРЕНИЕ ДЛЯ 10 РАБОЧИХ ПРОЦЕССОВ

	Количество задач, шт.				
Длительность выполнения одной задачи, с	10	20	30	40	50
10 50 - эмулятор	3.33333	4.0	5.0	5.71429	5.55556
10 - лучшее, стенд	1.69079	2.59185	4.38909	2.93101	3.2502
10 - худшее, стенд	1.23553	2.02957	3.34938	2.84712	3.19064
20 - лучшее, стенд	2.96925	4.35777	4.40018	5.8736	5.48895
20 - худшее, стенд	2.23945	3.44074	3.73296	4.97036	5.42627
30 - лучшее, стенд	3.09111	3.71213	5.48899	6.07871	5.70073
30 - худшее, стенд	3.0209	3.62881	4.55871	5.20853	5.09511
40 - лучшее, стенд	4.72322	4.63342	5.60457	6.16455	5.84823
40 - худшее, стенд	3.04433	3.71611	4.66365	5.29505	5.21234
50 - лучшее, стенд	3.18491	4.722	5.65974	6.32544	5.93804
50 - худшее, стенд	3.1375	3.77058	4.72567	5.40605	5.28163

1)) B	работе	показано,	что метод	организации	вычислений	на осн	ове ж	курнала
C	обі	ытий по	озволяет						

_	успешно решать проблему отказоустойчивости
	балансировки нагрузки,
	обеспечивает ускорение вычислений.

Ограничение метода – избыточный объем вычислений, не принципиальный в случае доступности и низкой себестоимости вычислительных ресурсов.

2) Рассмотренный метод организации вычислений может быть адаптирован для

приложений с динамически формируемым множеством зависимых задач,
реализаций на основе технологий блокчейна.

http://templet.ssau.ru/wiki - вики и образовательные ресурсы проекта Templet
 https://github.com/the-templet-project - Templet SDK x3 - актуальная версия
 https://github.com/the-templet-project/templet/tree/master/samples/blchsym — исследуемый код и результаты экспериментов

Автор: Востокин Сергей Владимирович

д.т.н., зав. кафедрой программных систем, Самарский национальный исследовательский университет имени академика С.П. Королева easts@mail.ru

СПАСИБО ЗА ВНИМАНИЕ!

