10th International Conference, GRID'2023

Balanced identification of mathematical models as a service of the Everest distributed computing platform

> <u>Vladimir Voloshinov</u>, Alexander Sokolov http://bit.ly/VoloshinovGScholar

Center for Distributed Computing, Kharkevich Institute for Information Transmission Problems,

This work was supported by the Russian Science Foundation under grant no. 22-11-00317, https://rscf.ru/project/22-11-00317/

SvF-technology

- SvF (Simplicity vs Fitting) a technology to support construction of mathematical models (structural, not regression only) based on experimental data.
- It has been successfully applied in biology, population dynamics, plant physiology, plasma physics, meteorology, ecology... Freely available in source code https://github.com/distcomp/SvF
- Basic publications (A. Sokolov had used this method repeatedly several years before)
- 1. Sokolov A., Voloshinov V. Model Selection by Balanced Identification: the Interplay of Optimization and Distributed Computing // Open Computer Science, 2020
- Соколов А.В., Волошинов В.В. Выбор математической модели: баланс между сложностью и близостью к измерениям // International Journal of Open Information Technologies, 2018
- find other references here https://github.com/distcomp/SvF#references
- up-to-date User Manual https://github.com/.../SvF/SvF_UserGuide.pdf

The SvF computational scheme is based on solving special-type bi-level optimization problems. Here, at the lower level, it is necessary to solve <u>a set of independent</u> <u>optimization problems</u> similar to the inverse problems with the Tikhonov regularization.

General flow-chart of SvF-technology

- The main problem: to construct and to validate mathematical model of a *phenomenon* by a set of experimental data
- Inputs: Experimental data (relational DB tables *.txt, *.xls ... see User Manual)
- Hypothesis about the structure of mathematical model and its formulation (as a set of equations, inequalities, may be integro-differential expressions) with explicit indications which parameters, or functions need to be determined (be identified).
- All other steps may be performed automatically:
- 1. Formulation of bilevel optimization problem
- 2. Automatic discretization of optimization problems, if it is required, e.g. if differential and/or integral equations are presented in the model.
- 3. Automatic generation of SvF-computing scenario as a Python program
- 4. Implementation of SvF-scenario either locally, or in Everest distributed computing environment, http://everest.distcomp.org/

Example. "Inverse problem" for ODE

Identify a model of dynamic system by a set of trajectory points known with error.

Hypothesis: ODE (of order 1, 2). We need to identify right side of ODE.

$$\frac{\left\{ \left(\tilde{x}_d, t_d \right) : d = 1 : N_d \right\}, \tilde{x}_d = x(t_d) \pm \text{err}}{\dot{x} = F(t, x(t)) \mid \ddot{x} = F(t, x(t)), \ t \in [t_{\mathbf{L}}, t_{\mathbf{U}}]} \right\} \Rightarrow \boldsymbol{x}(t), \boldsymbol{F}(t, \boldsymbol{x}) - ?$$

SvF lower-level problem: cross-validation sub-problems

Example. "Inverse problem" for ODE

Identify a model of dynamic system by a set of trajectory points known with error.

Hypothesis: ODE (of order 1, 2). We need to identify right side of ODE.

$$\frac{\left\{\left(\tilde{x}_{d}, t_{d}\right): d=1: N_{d}\right\}, \tilde{x}_{d}=x(t_{d}) \pm \mathsf{err}}{\dot{x}=F(t, x(t)) \mid \ddot{x}=F(t, x(t)), \ t\in[t_{\mathbf{L}}, t_{\mathbf{U}}]} \right\} \Rightarrow \boldsymbol{x}(t), \boldsymbol{F}(t, \boldsymbol{x})-?$$

SvF CV lower-level problems: "training data-set"

$$\boldsymbol{D_k} \doteq \left\{ d = 1: N_d, d \neq k \right\}, k = 1: N_d$$

regularization coefficients

 $\mathcal{P}(D_k, \alpha) \Rightarrow x_k^{\alpha}(\cdot)$

data fitting simplicity (smooth.)
$$\boldsymbol{\alpha} = (\alpha_t, \alpha_x)$$

$$\frac{1}{|\boldsymbol{D}_k|} \sum_{d \in \boldsymbol{D}_k} (\tilde{x}_d - x(t_d))^2 + R(\boldsymbol{\alpha}, F(\cdot, \cdot)) \rightarrow \min_{x(\cdot), F(\cdot, \cdot)},$$

$$\dot{x} = F(x(t)) \mid \ddot{x} = F(x(t)), \ t \in [t_{\mathbf{L}}, t_{\mathbf{U}}],$$

$$x(\cdot) \in \mathbf{C}^2 [t_{\mathbf{L}}, t_{\mathbf{U}}], F(\cdot) \in \mathbf{C}^2 [x_{\mathbf{L}}, x_{\mathbf{U}}].$$

$$R(\boldsymbol{\alpha}, F(\cdot, \cdot)) =$$

$$\int_{t_{\mathbf{L}}}^{t_{\mathbf{U}}} \sum_{x_{\mathbf{L}}} (\alpha_t^2 (F_{tt}''(t, x))^2 + 2\alpha_t \alpha_x (F_{tx}''(t, x))^2 + \alpha_x^2 (F_{xx}''(t, x))^2) dt dx$$

SvF lower-level problem: cross-validation sub-problems

Example. Inverse problem for ODE. Solving bilevel opt. prob.

CV-error for a fixed $\boldsymbol{\alpha} = (\alpha_t, \alpha_x) \quad \mathcal{P}(\boldsymbol{D}_k, \boldsymbol{\alpha}) \Rightarrow x_k^{\boldsymbol{\alpha}}(\cdot) \quad (k=1:N_d)$

$$\boldsymbol{\sigma}_{\mathsf{cv}}(\boldsymbol{\alpha}) = \sqrt{\frac{1}{N_d} \sum_{k=1:N_d} (\tilde{x}_k - x_k^{\boldsymbol{\alpha}}(t_k))^2}$$

SvF upper-level problem: minimize CV-error by α

$$\begin{array}{c} \text{updating} \\ \alpha \end{array} \qquad \left\{ \begin{array}{c} \mathcal{P}(\boldsymbol{D}_{1}, \alpha) & \cdots & \mathcal{P}(\boldsymbol{D}_{N_{d}}, \alpha) \right\} \\ \text{optimal} \quad \alpha \end{array} \\ \left\{ \begin{array}{c} \sigma_{\mathsf{cv}}(\alpha) \rightarrow \min_{\alpha \geqslant 0} \\ \text{optimal} \quad \alpha^{*} \\ \mathcal{P}(\boldsymbol{D}, \alpha^{*}) \Rightarrow \boldsymbol{x}^{*}(\cdot) \end{array} \right\} \\ \mathcal{P}(\boldsymbol{D}, \alpha^{*}) \Rightarrow \boldsymbol{x}^{*}(\cdot) \end{array}$$

$$\boldsymbol{\tau}_{\mathsf{mse}}(\alpha^{*}) = \sqrt{\frac{1}{N_{d}} \sum_{k=1:N_{d}} (\tilde{\boldsymbol{x}}_{k} - \boldsymbol{x}^{*}(\boldsymbol{t}_{k}))^{2}} \quad \text{Final result: Root Mean} \\ \mathsf{Squared Error} \end{array}$$

In current implementation all variational expressions are discretized to get finite dimensional Mathematical Programming Problems which may be solved by general purpose optimization solvers (we use lpopt and SCIP, optionally).

Typical chain of optimization problems

$$\begin{array}{c} \alpha_{0} \qquad \alpha = (\alpha_{t}, \alpha_{x}) \quad \mathcal{P}(D_{k}, \alpha) \Rightarrow x_{k}^{\alpha}(\cdot) \quad (k=1:N_{d}) \\ \hline \alpha_{1} \qquad \mathcal{P}(D_{1}, \alpha_{0}) & \cdots \mathcal{P}(D_{N_{d}}, \alpha_{0}) \\ \hline \alpha_{2} \qquad \mathcal{P}(D_{1}, \alpha_{1}) & \cdots \mathcal{P}(D_{N_{d}}, \alpha_{1}) \\ \hline \alpha_{2} \qquad \cdots \\ \hline \alpha^{*} \qquad \mathcal{P}(D_{1}, \alpha_{M}) & \cdots \mathcal{P}(D_{N_{d}}, \alpha_{M}) \\ \hline \mathcal{P}(D, \alpha^{*}) \Rightarrow x^{*}(\cdot) \\ \hline \sigma_{\mathsf{mse}}(\alpha^{*}) = \sqrt{\frac{1}{N_{d}} \sum_{k=1:N_{d}} (\tilde{x}_{k} - x^{*}(t_{k}))^{2}} \end{array}$$

Why we need remote SvF-service & distributed computing

- SvF-toolkit may be run in local mode when all problems are solved at the same host where SvF-main script is run
- There may be dozens of rather hard optimization problems
- SvF-toolkit already can use Everest to solve a set of independent opt.
 problems on remote resources in parallel mode
- Even with the aid of Everest the SvF-scenario may be rather time consuming (a few hours) and all this time your comp. must be on.

It would be nice to have an option to run SvF-scenario in a mode "send data and wait notification by mail"...

Maturity of SvF-toolkit enables to do that !

- Python 3.7+ basic language
- Pyomo toolkit, www.pyomo.org, PYthon Opt. Modeling Objects, Supports all basic types of Math. Programming problems: LP, QP, NLP, MILP, MINLP, Stochastic ..., DAE (Differential and Integral equations), ...
 Pyomo supports most of all open source and commercial AMPL-compatible solvers <u>lpopt, SCIP</u>, CBC, CPLEX, Gurobi, COPT, etc
- Everest platform, http://everest.distcomp.org/, and its Optimization Modeling Facet https://optmod.distcomp.org
 - Everest Python API (client side), https://gitlab.com/everest/python-api
 - Everest Application, https://optmod.distcomp.org/apps/vladimirv/SSOP to solve a set of independent optimization problems
 - Everest App., https://optmod.distcomp.org/apps/vladimirv/svf-remote to run the SvF-scenario in remote mode

Everest platform architecture outlines

Describe/Develop/Deploy REST-services representing existing applications

External Computing Resources (attached by users)

svf-remote application in / out parameters

Everest Opt	Optimizatior	Vladimir Voloshinov vladimirv									
APPLICATIONS	apps $ angle$	READY									
Create new	0.1.0	Unstar 🚖 4									
E JOBS ✓	About	mit Job Discussion									
List	Input	ts									
Create new	Ti	itle Name	Type arrav[UF	Values Default Description							
ABOUT	ai *.	nd .res	anaytor	Input data (txt, xls)							
	✓ M fil	ING- mng le	URI	MNG-file (txt, odt) with SvF-task formulation							
	Outp	Outputs									
	Ti	itle Name	Туре	Description							
	re	esults results	URI	Results *.sol, *.res, *.png							
	✓ st	tderr stderr	URI	Copy of console output							
	🗸 st	tdout stdout	URI	Copy of console output							

GRID'2023

svf-remote implementation is simple (due to SvF features)

C F	Access Command runSvF-re	Versions mote.sh	ıram}				•						li.
(Access Command runSvF-re	Versions mote.sh											li,
(Access Command	Versions											
	Access	Versions					•						
			1			,							
	Medatada	a Descri	iption	Parameters	Config	uration	File	es	Reso	ource	es		
ä	apps 〉 s	vf-remote	〉 edit	t		O Can	cel	ā (Delete		a Up	date	
tin	nization N	/lodelling					Ø	Vla vla	a dimi dimin	r Vol	oshi		
//oj	ptmod. distc	omp.org/app	ps/vladim	irv/svf-remote/	edit 🖒	\bigtriangledown	•	Ø.	V	2		பி	\gg

#!/bin/bash
<PATH TO SvF Folder>/SvF/runSvF31.sh
zip results.zip *.sol *.png *.res

runSvF-remote.sh – somewhere in the PATH

svf-remote user can choose Everest resource to run

Everest user can select resource where SvF-remote job will be run Requirements:

SvF-toolkit is installed and runSvF-remote.sh is in the \$PATH

https://optmod. distcomp.org /apps/vladimirv/svf-remote/edit	☆	\bigtriangledown	+ (•	e		பி	>>	≡
Optimization Modelling Services				Ø	Vla vla	adimi dimin	r Vol	oshii	nov
apps \rangle svf-remote \rangle edit	0	Cance	I 1	i Delete	2	a Up	date		
Medatada Description Parameters Configuration Files Resources									
Resources									
YCloud4SvF ⊗									
Select one of more resources to run application jobs									
Override Resources Override default resources during job submission									

svf-remote flow chart

svf-remote service enables to use only browser to send data files and MNG-file with SvF-task to "executor". User can select resource to run *svf-remote* job.

Example of MNG-file, *.ODT format. Dumped oscillator.

```
Here you can place arbitrary text and pictures
BoF-SvF
Runmode = 'P\&S'
SvF.DrawMode = 'File'
                                           #'File&Screen'
SvF.Resources = ["pool-scip-ipopt"] #["abc_pc" ]
                10 # Number of iter.
CVNumOfIter
CVstep
                21 # Numberof CV subproblems
Select x, t from Spring5.dat
GRID:
        t ∈ [ -1., 2.5, 0.025 ]
           x(t)
v(t)
Var:
                 # will be replaced to muu in Python code
           Ц
           ХГ
SchemeD1 = Central
        d2/dt2(x) == - K * ( x - xr ) - muu * v
# E0:
         v == d/dt(x)
#
E0:
         \frac{d^2}{dt^2}(x) = -K * (x - xr) - \mu * v
        v == \frac{d}{dt}(x)
OBJ:
        x.Complexity ( Penal[0]) + x.MSD()
Draw
EOF
Some remarks, figures, formulas may be added here
GRID'2023
```

Balanced Identification as an Everest service (SvF-remote), Vladimir Voloshinov, Alexander Sokolov 15 / 18

Conclusions and future plans

Conclusions

- *svf-remote* application reproduces all conveniences of current SvF-tookit:
 - symbolic formulation of identification task in MNG-file (ASCII text, OpenOffice *.odt) with symbolic formulas
 - access to all Everest resources with optimization solvers
 - returns results in numerical and graphical form
- Ease of use from browser for a long calculations on the principle of "launch and wait for notification by mail"
- You can run *svf-remote* on any Everest resources (servers, desktops, VMs) where SvF-toolkit is installed

Nearest future plans

- Involve our IPPI servers as **svf-remote** deployment hosts
- Migrate from Everest "local" Agent on Yandex Cloud VM to Everest YCC Agent (for Yandex Cloud Container) (to save money)
- To try Jupyter as another user interface to SvF-toolkit, installed on remote host (SSOP will remain with us)

Thank you.

Questions?

http://bit.ly/VoloshinovGScholar

vladimir.voloshinov@gmail.com

Discretization of autonomous DE: polynomila + mesh

One of approach in SvF: outer function is replaced with polynomial with unknown coefficients, inner function — unknown values on a meshgrid (by t):

$$F(x) \sim \mathcal{P}(x) = \sum_{p=0}^{P} c_{p} \cdot x^{p} \qquad x(t) \sim \{(x_{i}, t_{k}) : i = 0: N_{x}, k = 0: N_{t}\}, \\ x_{i} = x_{\mathbf{L}} + i \cdot \Delta x, \Delta x = \frac{x_{N_{x}} - x_{\mathbf{L}}}{N_{x}}, \\ t_{k} = t_{\mathbf{L}} + k \cdot \Delta t, \Delta t = \frac{t_{N_{t}} - t_{\mathbf{L}}}{N_{t}}, \\ \left\{\dot{x} = F(x(t))\right\} \sim \left\{\frac{x(t_{k}) - x(t_{k-1})}{\Delta t} = \sum_{p=0}^{P} c_{p} \cdot \left(\frac{x(t_{k}) + x(t_{k-1})}{2}\right)^{p}, k = 1: N_{t}\right\} \\ \left\{\ddot{x} = F(x(t))\right\} \sim \left\{\frac{x(t_{k+1}) - 2x(t_{k}) + x(t_{k-1})}{\Delta t^{2}} = \sum_{p=0}^{P} c_{p} \cdot x(t_{k})^{p}, k = 1: (N_{t} - 1)\right\} \\ x(t_{d}) \sim \hat{x}_{d} = \frac{t_{k} - t_{d}}{\Delta t} x(t_{k-1}) + \frac{t_{k-1} - t_{d}}{\Delta t} x(t_{k}), \ t_{d} \in [t_{k-1}, t_{k}] \\ \frac{1}{D} \sum_{d=1:D} (\tilde{x}_{d} - \hat{x}_{d}))^{2} + \alpha \sum_{\dots} \left(\frac{\mathcal{P}(x_{i+1}) - 2\mathcal{P}(x_{i}) + \mathcal{P}(x_{i-1})}{\Delta x^{2}}\right)^{2} \Delta x \to \min_{x_{i}, c_{p}}.$$

This we have **nonlinear mathematical programming problem** with polynomials of non-small degrees (up to 7, 8)

GRID'2023 Balanced Identification as an Everest service (SvF-remote), Vladimir Voloshinov, Alexander Sokolov 18 / 18