
The 10th International Conference "Distributed Computing and Grid 
Technologies in Science and Education" (GRID'2023)

A comprehensive approach to running 
optimization workflows in the Everest 

platform

Sergey Smirnov

 

Center for Distributed Computing,
Institute for Information Transmission Problems

of the Russian Academy of Sciences (Kharkevich Institute)

This work was supported by the Russian Science Foundation under grant no. 22-11-00317



2

Optimization Workflow

Optimization subsystem:

• Gets input data

• Checks data consistency

• Prepares data for further optimization steps

• Performs one or more optimization steps (build and solve 
a model with a solver)

• Saves results for further processing

It is good to be able to vary:

• Settings

• Version

• Data



3 

Everest Web-based Platform, everest.distcomp.org
Describe/Develop/Deploy REST-services representing existing applications

https://gitlab.com/everest/server

https://gitlab.com/everest/agent

https://gitlab.com/everest/
python-api



4

Everest Job Inputs

Inputs:

• Model’s version

• JSON parameters 
(editable text field)

• Input data as archive

• Computing resource 
can be selected



5

Everest Job Outputs

Outputs:

1.Results as archive

2.stderr (summary) 

3.stdout viewed in one click

4.Archive with files for 
debugging purposes 
(controlled by parameter)

5.Model’s version

6.Last status message

7.CPU and memory statistics 
collected by a simple script

Resubmit button is very handy 1

2

3

4

5

6

7



6

Everest Application Settings



7

Model Deployment (versioning)

Model’s source code can be stored on GitLab.com.

REST API: https://docs.gitlab.com/ee/api/api_resources.html

Token is needed to access a private repo.

Useful API endpoints:

• Download source code for a commit (rate limited):
GET /projects/:id/repository/archive[.format]?sha=$COMMIT

• Download CI/CD job’s artifact file (no rate limit):
GET /projects/:id/jobs/artifacts/:ref_name/raw/*artifact_path?
job=name

• Get commit’s metadata:
GET /projects/:id/repository/commits/$COMMIT

https://docs.gitlab.com/ee/api/api_resources.html


8

Cloud Resources in Everest

Everest creates VMs on demand and kills them if idle.

Supported providers:

• Google Cloud Platform

• Yandex Cloud

Preemptible instances are supported (much cheaper)

VM image:

• Can be set up using Packer

• Needs Python version supported by Everest Agent (2.7, 
3.6–3.9) + required modules

• Python modules and solvers for the model

• Can include tokens required to download model’s source 
code



9

Helper scripts

bootstrap.sh script:

• Stored in Everest application files

• Downloads model’s source code

• Runs run-task.sh script from the model

• Token to download source code can be stored there or in 
image’s environment variables

run-task.sh script:

• Prepares human-readable version string

• Unarchives input files

• Sets up necessary environment variables

• Converts parameters to command line args of the model

• Runs model and auxiliary processes

• Collects output files



10

Live status

Everest task messages are used to 
update job’s status

Environment variables:

• EVEREST_AGENT_PORT

• EVEREST_AGENT_ADDRESS

• EVEREST_AGENT_TASK_ID



11

Conclusion

• Our setup allows both model debugging and production use

• Live calculation status is available

• Minimal costs: VM instances launched an destroyed on 
demand, preemptible instances can be used

• Model’s source code can be stored outside of Everest and 
VM image



12

Thank you!

Sergey Smirnov,
IITP RAS (Kharkevich Institute)

sasmir@gmail.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

