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Optimization Workflow

Optimization subsystem:

• Gets input data

• Checks data consistency

• Prepares data for further optimization steps

• Performs one or more optimization steps (build and solve 
a model with a solver)

• Saves results for further processing

It is good to be able to vary:

• Settings

• Version

• Data
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Everest Web-based Platform, everest.distcomp.org
Describe/Develop/Deploy REST-services representing existing applications

https://gitlab.com/everest/server

https://gitlab.com/everest/agent

https://gitlab.com/everest/
python-api
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Everest Job Inputs

Inputs:

• Model’s version

• JSON parameters 
(editable text field)

• Input data as archive

• Computing resource 
can be selected
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Everest Job Outputs

Outputs:

1.Results as archive

2.stderr (summary) 

3.stdout viewed in one click

4.Archive with files for 
debugging purposes 
(controlled by parameter)

5.Model’s version

6.Last status message

7.CPU and memory statistics 
collected by a simple script

Resubmit button is very handy 1
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Everest Application Settings
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Model Deployment (versioning)

Model’s source code can be stored on GitLab.com.

REST API: https://docs.gitlab.com/ee/api/api_resources.html

Token is needed to access a private repo.

Useful API endpoints:

• Download source code for a commit (rate limited):
GET /projects/:id/repository/archive[.format]?sha=$COMMIT

• Download CI/CD job’s artifact file (no rate limit):
GET /projects/:id/jobs/artifacts/:ref_name/raw/*artifact_path?
job=name

• Get commit’s metadata:
GET /projects/:id/repository/commits/$COMMIT

https://docs.gitlab.com/ee/api/api_resources.html


8

Cloud Resources in Everest

Everest creates VMs on demand and kills them if idle.

Supported providers:

• Google Cloud Platform

• Yandex Cloud

Preemptible instances are supported (much cheaper)

VM image:

• Can be set up using Packer

• Needs Python version supported by Everest Agent (2.7, 
3.6–3.9) + required modules

• Python modules and solvers for the model

• Can include tokens required to download model’s source 
code
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Helper scripts

bootstrap.sh script:

• Stored in Everest application files

• Downloads model’s source code

• Runs run-task.sh script from the model

• Token to download source code can be stored there or in 
image’s environment variables

run-task.sh script:

• Prepares human-readable version string

• Unarchives input files

• Sets up necessary environment variables

• Converts parameters to command line args of the model

• Runs model and auxiliary processes

• Collects output files
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Live status

Everest task messages are used to 
update job’s status

Environment variables:

• EVEREST_AGENT_PORT

• EVEREST_AGENT_ADDRESS

• EVEREST_AGENT_TASK_ID
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Conclusion

• Our setup allows both model debugging and production use

• Live calculation status is available

• Minimal costs: VM instances launched an destroyed on 
demand, preemptible instances can be used

• Model’s source code can be stored outside of Everest and 
VM image
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Thank you!

Sergey Smirnov,
IITP RAS (Kharkevich Institute)

sasmir@gmail.com
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