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Di�erential equations

The di�erential equations for the three-body problem are derived from
Newton's second law and Newton's law of gravity:

mir̈i =
3∑

j=1,j 6=i
Gmimj

(rj − ri)
‖ri − rj‖3

, i = 1, 2, 3.

We consider normalization G = m1 = m2 = m3 = 1 and planar
motion. We solve the system numerically in the following �rst order
form:

ẋi = vxi, ẏi = vyi

v̇xi =
3∑

j=1,j 6=i

(xj − xi)
‖ri − rj‖3

, v̇yi =
3∑

j=1,j 6=i

(yj − yi)
‖ri − rj‖3

, i = 1, 2, 3

So we have a vector of 12 unknown functions:

X(t) = (x1, y1, x2, y2, x3, y3, vx1, vy1, vx2, vy2, vx3, vy3)
>

. The model treats the bodies as mass points.
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Initial con�guration (Euler initial con�guration)

We search for periodic planar orbits as Suvakov and Shibayama - with
zero angular momentum and symmetric initial con�guration with parallel
velocities (Euler con�guration)

(vx1(0), vy1(0)) = (vx2(0), vy2(0)) = (vx, vy)
(vx3(0), vy3(0)) = (−2vx,−2vy)
vx ∈ [0, 0.8], vy ∈ [0, 0.8] are parameters.

Let us denote the periods of the orbits with T . Our goal is to �nd
triplets (vx, vy, T ) for which the solution is a choreography.
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WHAT IS A CHOREOGRAPHY?

Let qi(t) = (xi(t), yi(t)), i = 1, 2, 3 are the positions of the
three bodies. A T -periodic path q(t) = (q1(t), q2(t), q3(t)) is a
choreography, if

qi(t) = qi+1(t+ T/3)

This means that the three bodies move along one and the same trajectory
with a time delay of T/3. The condition can be regarded as a cyclic
periodicity condition (a periodicity condition with respect to a cyclic
permutation of the indexes of the bodies) at T/3 which is satis�ed in
addition to the standard periodic condition:

qi(t) = qi(t+ T )

A choreography is called trivial if it is a topological power of the
famous �gure-eight orbit, otherwise it is called nontrivial.
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Four stages of the numerical procedure

The numerical procedure consists of four stages:

Stage (I) - Computing initial approximations for the correction method
(grid-search algorithm on the rectangular window
(vx, vy) ∈ [0, 0.8]× [0, 0.8] with step size = 1/4096)

Candidates for correction are the triplets (vx, vy, T ), such that the
cyclically permuted return proximityR(T ) has local minima on the grid
for vx, vy and R(T ) is less than 0.1, T is an approximation of T/3:

R(t) = ‖P̂X(t)−X(0)‖2

R(T ) = min
1<t≤T0

R(t) < 0.1

P̂ is a cyclic permutation of the body indices.
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Four stages of the numerical procedure

Stage (II) - Applying the modi�ed Newton's method with the cyclic
perturbed periodic condition at T/3, which can converge or diverge.
Convergence means that we catch a choreographic periodic solution.

Stage (III) Checking the results from stage (II) by applying the classic
Newton's method with the standard periodic condition at T .

Stage (IV) - Applying the classic Newton's method with increased
order of method and precision for computing the solution with many
correct digits, in this work - 180 correct digits. This stage can be regarded
as a veri�cation for the existence of the solutions.
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The form of the linear system at each step of Newton's
or modi�ed Newton's method for the standard p.c.

Let vx, vy, T are approximations of the initial velocities and the
period for some periodic solution:X(T ) ≈ X(0). These approximations
are improved with corrections ∆vx,∆vy,∆T by expanding the periodicity
condition in a multivariable Taylor series up to the �rst order. We obtain
the following linear system with 12x3 matrix:
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The form of the linear system for Newton's or modi�ed
Newton's method for the cyclically permuted p.c.

Let vx, vy, T are approximations of the initial velocities and T/3.
These approximations are improved with corrections ∆vx,∆vy,∆T
by solving the following linear system with 12x3 matrix:

We solve this system as a linear least square problem using QR
decomposition based on Householder re�ections.
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Classic Newton's method vs Modi�ed Newton's method

With classic Newton's method we correct this way:

vx := vx + ∆vx, vy := vy + ∆vy, T := T + ∆T

For the modi�cation of Newton's method based on continuous analog
of Newton's method, we introduce a parameter 0 < τk <= 1, where
k is the number of the iteration. Now we correct this way:

vx := vx + τk∆vx, vy := vy + τk∆vy, T := T + τk∆T

Let Rk be the value of the return proximity R(T ) at the k-th iteration.
With given τ0 the next τk, k = 1, 2, ... is computed with the following
adaptive algorithm:

τk =

 min(1, τk−1Rk−1/Rk), Rk ≤ Rk−1,

max(τ0, τk−1Rk−1/Rk), Rk > Rk−1,

The modi�ed Newton's method has a larger domain of convergence!
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For simulation the system and computing the partial
derivatives we use high precision Taylor Series Method

For stage (I) of the numerical procedure we use 44-th order of Taylor
series and precision of 38 decimal digits.

For stages (II) and (III) we use 154-th order of Taylor series and
precision of 134 decimal digits.

For stage (IV) (computing the solutions with 180 correct digits) we
made two computations. First computation with 242-th order method
and 211 decimal digits of precision and the second computation for
veri�cation - with 286-th order method and 250 digits of precision.

For multiple precision �oating point arithmetic we use GMP-library
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Checking the convergence of Newton's method
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Numerical results

As a result of the specialized search for T ≤ 300 we found 259 trivial
and 164 nontrivial choreographies (161 new ones).

A topological method is applied to classify the periodic orbits into
families. Each family corresponds to a di�erent conjugacy class of the
free group on two letters (a,b). Trivial choreographies correspond to free
word elements (abAB)

n
for some power n called topological power.

Nontrivial choreographies are with a di�erent free word elements.

For each found solution we compute the free group element and
the four numbers (vx, vy, T, T

∗) with 180 correct digits, where T ∗

is the scale-invariant period. The scale-invariant period is de�ned as

T ∗ = T |E|
3
2 , where E is the energy of our initial con�guration.

The linear stability of all found orbits is investigated by a high precision
computing of the eigenvalues of the monodromy matrices. All nontrivial
choreographies are unstable. 13 of the trivial are linearly stable.
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