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Introduction

We consider the ϕ4 equation

Φtt −∆Φ− Φ+ Φ3 = 0, ∆ =
d2

dr2
+

2

r

d

dr
. (1)

Localized long-lived pulsating states (oscillons) in the
three-dimensional ϕ4 theory are of interest in a number of physical
and mathematical applications including cosmological and
high-energy physics contexts.

Computer simulations revealed the formation of long-lived pulsating
structures of large amplitude and nearly unchanging width.
Bogolyubskii & Makhankov, JETP Lett 24 12 (1976)
Bogolyubskii & Makhankov, JETP Lett 25 107 (1977)
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Aim of the study
Example of numerical simulations of pulsating solution of Eq.(1):

Our aim is a study of structure and resonant properties of the
oscillon by examining the periodic standing wave in a ball of a large
but �nite radius. Numerical approach is based on numerical
continuation of solutions of a boundary value problem for the
respective nonlinear PDE on the rectangle [0,T]Ö[0,R] where T �
period, R � radius. Stability analysis is based on the Floquet theory.
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Boundary value problem

Let Φ(r , t) be a spherically-symmetric solution of equation (1)
approaching Φ0 = −1 (one of two vacuum solutions) as r → ∞.
The di�erence

ϕ = Φ− Φ0

obeys

ϕtt − ϕrr −
2

r
ϕr + 2ϕ− 3ϕ2 + ϕ3 = 0. (2a)

Instead of searching for solutions of the equation (2a) vanishing at
in�nity, we consider solutions satisfying the boundary conditions

ϕr (0, t) = ϕ(R, t) = 0 (2b)

with a large R . (The �rst condition in (2b) ensures the regularity of
the Laplacian at the origin.) One more boundary condition stems
from the requirement of periodicity with some T :

ϕ(r ,T ) = ϕ(r , 0). (2c)
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Energy and frequency

The periodic standing waves are characterised by their energy

E = 4π

∫ R

0

(
ϕ2t
2

+
ϕ2r
2

+ ϕ2 − ϕ3 +
ϕ4

4

)
r2dr (3)

and frequency

ω =
2π

T
. (4)

If the solution with frequency ω does not change appreciably as R
is increased � in particular, if the energy (3) does not change �
this standing wave provides a fairly accurate approximation for the
periodic solution in an in�nite space.

In what follows, we present results of analysis of the boundary-value
problem (2), including the E (ω/ω0) dependence where ω0 =

√
2
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Numerical approach

We introduce τ = t/T , ψ(r , τ) = ϕ(r , t). Hence,

ψτ (r , τ) = Tϕt(r , t), ψττ (r , τ) = T 2ϕtt(r , t),

and our boundary value problem takes a form:

ψtt + T 2 · [−ψrr −
2

r
ψr + 2ψ − 3ψ2 + ψ3] = 0, (5a)

ψr (0, t) = ψ(R, t) = 0, ψ(r , 1) = ψ(r , 0). (5b)

Newtonian iteration

Predictor-corrector numerical continuation with the crossing
through the turning points

2nd order accuracy �nite di�erence approximation of
derivatives.
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Stability analysis
To classify the stability of the resulting standing waves against
spherically-symmetric perturbations we considered the linearised
equation

ytt − yrr −
2

r
yr − y + 3(ϕ− 1)2y = 0 (6)

with the boundary conditions yr (0, t) = y(R, t) = 0. We expand
y(r , t) in the sine Fourier series, substitute the expansion to Eq. (6)
and, after transformations, �nally obtain a system of 2N ODEs wrt
unknown time-dependent Fourier coe�cients:

u̇m = vm, v̇m + F = 0, (7)

F = (2+k2m)um−3
N∑

n=1

(Am−n−Am+n)un+
3

2

N∑
n=1

(Am−n−Am+n)un,

An, Bn are periodic functions of t, with period T :

An(t) =
2

R

∫ R

0

ϕ(r , t) cos(knr)dr , Bn(t) =
2

R

∫ R

0

ϕ2(r , t) cos(knr)dr
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Calculation of Floquet multiplyers

The system (7) is solved, numerically, 2N times with series of
varied initial conditions at the time-interval [0,T ] in order to form
a matrix MT . Eigenvalues µ = exp(λT ) of this matrix are the
Floquet multipliers. The solution ϕ(r , t) is deemed stable if all its
Floquet multipliers lie on the unit circle |ζ| = 1 (left) and unstable
if there are multipliers outside the circle (right).

Floquet multipliers at the (Reµ,Imµ) plane. Stability: T=4.7206,
ω/ω0=0.94117. Instability: T=5.025, ω/ω0=0.88416.
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Numerical approach, parallel implementation

MATLAB implementation.

Procedure ode45 with the tolerance parameter value 10−7.

Cubic spline interpolation for Am±n and Bm±n terms.

Standardly, N=1000, i.e. we have to numerically solve 2000
independent Cauchy problems to form matrix MT .

Long calculation � each run takes about 2 days at the HybriLIT
cluster and about one day at the supercomputer �Govorun�.

We need massive calculations in wide range of period T .

Parallel implementation is based on the using the parfor
operation which provides automatic splitting the calculations of
2N Cauchy problems to available parallel threads (�workers�).

The speedup is about 20 times at the Hybrilit cluster and
about 10 times at the supercomputer �Govorun�.
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E�ect of parallel implementation

Execution time depending on a number of MATLAB-threads at the
Hybrilit cluster and at the supercomputer �Govorun� in case
N=1000 (left panel) and N=700 (right panel)
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When the MATLAB-threads number is between 15 and 30, the
execution time becomes the same at the Hybrilit and Govorun
machines.
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Results: Energy-frequency diagram
The branch of ϕ comes from E=0 at Ω1. Continuation produces curve

E (ω) with a sequence of spikes. Number and positions of spikes are

R-sensitive. In contrast, the U-shaped envelope (red line) does not

depend on R and has a single minimum, ω/ω0 = 0.967.
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Results: bifurcation in the region of resonant spikes

magenta dashed: Bessel-like solution
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Results: stability domains

blue: unstable
magenta: stable

The Bessel waves (not shown here) are found to be stable from
E=0 to the bifurcation point
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Summary (1/2)

Existence of two sets of spherically symmetric standing waves
of Eq.(1) in a ball of �nite radius is demonstrated.

First, the Bessel-like waves without explicitly localized core,
which are branching o� the zero solution and decaying in
proportion to r−1 as r → R .

The second type of nonlinear standing wave in a ball is
characterised by an exponentially localised pulsating core and a
small-amplitude slowly decaying second-harmonic tail. It comes
of the nodeless n = 1 Bessel wave.

Numerical continuation of this solution in frequency produces
an E (ω) curve with a sequence of spikes near the undertone
points ω = Ω(n)/2 with some large n. The left and right slope
of the spike adjacent to 1

2
Ω(n) result from a period-doubling

bifurcation of the n-th Bessel wave.
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Summary (2/2)

Away from the neighbourhoods of the spikes, the E (ω) curve
follows a U-shaped arc with a single minimum at
ωmin = 0.967ω0; the arc bounds all spikes from below. The arc
is una�ected by the ball radius variations, as long as R remains
large enough. This envelope curve describes the
energy-frequency dependence of the nearly-periodic oscillons in
the in�nite space.

We have classi�ed stability of these solutions against
spherically-symmetric perturbations. Speci�cally, we focused
on the interval 0.91ω0 < ω < Ω(1) and considered two values
of R : R = 40 and R = 100. The ball of radiusR = 40 has only
short stability intervals, located at the base of two spikes in its
E (ω) diagram. By contrast, the standing waves in the ball of
R = 100 have long stretches of stable frequencies.
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Open questions and Acknowledgments

What next?

What was obtained at this stage (numerics & analytics) has
been published in Phys Rev D 107 (2023) 076023

What about stability in case of the ball radius between 40 and
100?

Now the calculations with R=70 are in process

Accuracy should be improved
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Thank you
for your attention!
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