The ϕ^{4} oscillons in a ball: numerical approach and parallel implementation

E.V. Zemlyanaya ${ }^{1,2}$, A.A. Bogolubskaya ${ }^{1,2}$, M.V. Bashashin ${ }^{1,2}$, N.V. Alexeeva ${ }^{3}$, I.V. Barashenkov ${ }^{1,3}$

1 Joint Institute for Nuclear Research, Dubna, Russia
${ }^{2}$ Dubna State University, Dubna, Russia
${ }^{3}$ Centre for Theoretical and Mathematical Physics, University of Cape Town, South Africa

GRID'23, JINR, Dubna, July 3-10, 2023

Introduction

We consider the ϕ^{4} equation

$$
\begin{equation*}
\Phi_{t t}-\Delta \Phi-\Phi+\Phi^{3}=0, \quad \Delta=\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r} \tag{1}
\end{equation*}
$$

Localized long-lived pulsating states (oscillons) in the three-dimensional ϕ^{4} theory are of interest in a number of physical and mathematical applications including cosmological and high-energy physics contexts.

Computer simulations revealed the formation of long-lived pulsating structures of large amplitude and nearly unchanging width.
Bogolyubskii \& Makhankov, JETP Lett 2412 (1976)
Bogolyubskii \& Makhankov, JETP Lett 25107 (1977)

Aim of the study

Example of numerical simulations of pulsating solution of Eq.(1):

Our aim is a study of structure and resonant properties of the oscillon by examining the periodic standing wave in a ball of a large but finite radius. Numerical approach is based on numerical continuation of solutions of a boundary value problem for the respective nonlinear PDE on the rectangle $[0, T] \times[0, R]$ where $T-$ period, R - radius. Stability analysis is based on the Floquet theory.

Boundary value problem

Let $\Phi(r, t)$ be a spherically-symmetric solution of equation (1) approaching $\Phi_{0}=-1$ (one of two vacuum solutions) as $r \rightarrow \infty$. The difference

$$
\phi=\Phi-\Phi_{0}
$$

obeys

$$
\begin{equation*}
\phi_{t t}-\phi_{r r}-\frac{2}{r} \phi_{r}+2 \phi-3 \phi^{2}+\phi^{3}=0 \tag{2a}
\end{equation*}
$$

Instead of searching for solutions of the equation (2a) vanishing at infinity, we consider solutions satisfying the boundary conditions

$$
\begin{equation*}
\phi_{r}(0, t)=\phi(R, t)=0 \tag{2b}
\end{equation*}
$$

with a large R. (The first condition in (2b) ensures the regularity of the Laplacian at the origin.) One more boundary condition stems from the requirement of periodicity with some T :

$$
\begin{equation*}
\phi(r, T)=\phi(r, 0) . \tag{2c}
\end{equation*}
$$

Energy and frequency

The periodic standing waves are characterised by their energy

$$
\begin{equation*}
E=4 \pi \int_{0}^{R}\left(\frac{\phi_{t}^{2}}{2}+\frac{\phi_{r}^{2}}{2}+\phi^{2}-\phi^{3}+\frac{\phi^{4}}{4}\right) r^{2} d r \tag{3}
\end{equation*}
$$

and frequency

$$
\begin{equation*}
\omega=\frac{2 \pi}{T} . \tag{4}
\end{equation*}
$$

If the solution with frequency ω does not change appreciably as R is increased - in particular, if the energy (3) does not change this standing wave provides a fairly accurate approximation for the periodic solution in an infinite space.

In what follows, we present results of analysis of the boundary-value problem (2), including the $E\left(\omega / \omega_{0}\right)$ dependence where $\omega_{0}=\sqrt{2}$

Numerical approach

We introduce $\tau=t / T, \psi(r, \tau)=\phi(r, t)$. Hence,

$$
\psi_{\tau}(r, \tau)=T \phi_{t}(r, t), \quad \psi_{\tau \tau}(r, \tau)=T^{2} \phi_{t t}(r, t)
$$

and our boundary value problem takes a form:

$$
\begin{gather*}
\psi_{t t}+T^{2} \cdot\left[-\psi_{r r}-\frac{2}{r} \psi_{r}+2 \psi-3 \psi^{2}+\psi^{3}\right]=0 \tag{5a}\\
\psi_{r}(0, t)=\psi(R, t)=0, \quad \psi(r, 1)=\psi(r, 0) \tag{5b}
\end{gather*}
$$

- Newtonian iteration
- Predictor-corrector numerical continuation with the crossing through the turning points
- 2nd order accuracy finite difference approximation of derivatives.

Stability analysis

To classify the stability of the resulting standing waves against spherically-symmetric perturbations we considered the linearised equation

$$
\begin{equation*}
y_{t t}-y_{r r}-\frac{2}{r} y_{r}-y+3(\phi-1)^{2} y=0 \tag{6}
\end{equation*}
$$

with the boundary conditions $y_{r}(0, t)=y(R, t)=0$. We expand $y(r, t)$ in the sine Fourier series, substitute the expansion to Eq. (6) and, after transformations, finally obtain a system of $2 N$ ODEs wrt unknown time-dependent Fourier coefficients:

$$
\begin{gathered}
\dot{u}_{m}=v_{m}, \quad \dot{v}_{m}+\mathcal{F}=0 \\
\mathcal{F}=\left(2+k_{m}^{2}\right) u_{m}-3 \sum_{n=1}^{N}\left(A_{m-n}-A_{m+n}\right) u_{n}+\frac{3}{2} \sum_{n=1}^{N}\left(A_{m-n}-A_{m+n}\right) u_{n}
\end{gathered}
$$

A_{n}, B_{n} are periodic functions of t, with period T :

$$
A_{n}(t)=\frac{2}{R} \int_{0}^{R} \phi(r, t) \cos \left(k_{n} r\right) d r, \quad B_{n}(t)=\frac{2}{R^{r}} \int_{0}^{R} \phi^{2}(r, t) \cos \left(k_{n} r\right) d r
$$

E.V.Zemlyanaya, A.A.Bogolubskaya, M.V.Bashashin, N.V.Alexeeva, I.V.Barashenkov

The ϕ^{4} oscillons in a ball: numerical approach and parallel implementation

Calculation of Floquet multiplyers

The system (7) is solved, numerically, $2 N$ times with series of varied initial conditions at the time-interval $[0, T]$ in order to form a matrix M_{T}. Eigenvalues $\mu=\exp (\lambda T)$ of this matrix are the Floquet multipliers. The solution $\phi(r, t)$ is deemed stable if all its Floquet multipliers lie on the unit circle $|\zeta|=1$ (left) and unstable if there are multipliers outside the circle (right).

Floquet multipliers at the $(\operatorname{Re} \mu, \operatorname{Im} \mu)$ plane. Stability: $\mathrm{T}=4.7206$, $\omega / \omega_{0}=0.94117$. Instability: $T=5.025, \omega / \omega_{0}=0.88416$,

Numerical approach, parallel implementation

- MATLAB implementation.
- Procedure ode45 with the tolerance parameter value 10^{-7}.
- Cubic spline interpolation for $A_{m \pm n}$ and $B_{m \pm n}$ terms.
- Standardly, $N=1000$, i.e. we have to numerically solve 2000 independent Cauchy problems to form matrix M_{T}.
- Long calculation - each run takes about 2 days at the HybriLIT cluster and about one day at the supercomputer "Govorun".
- We need massive calculations in wide range of period T.
- Parallel implementation is based on the using the parfor operation which provides automatic splitting the calculations of $2 N$ Cauchy problems to available parallel threads ("workers").
- The speedup is about 20 times at the Hybrilit cluster and about 10 times at the supercomputer "Govorun".
E.V.Zemlyanaya, A.A.Bogolubskaya, M.V.Bashashin, N.V.Alexeeva, I.V.Barashenkov

The ϕ^{4} oscillons in a ball: numerical approach and parallel implementation

Effect of parallel implementation

Execution time depending on a number of MATLAB-threads at the Hybrilit cluster and at the supercomputer "Govorun" in case $\mathrm{N}=1000$ (left panel) and $\mathrm{N}=700$ (right panel)

When the MATLAB-threads number is between 15 and 30 , the execution time becomes the same at the Hybrilit and Govorun machines.

Results: Energy-frequency diagram

The branch of ϕ comes from $\mathrm{E}=0$ at Ω_{1}. Continuation produces curve $E(\omega)$ with a sequence of spikes. Number and positions of spikes are R-sensitive. In contrast, the U-shaped envelope (red line) does not depend on R and has a single minimum, $\omega / \omega_{0}=0.967$.

E.V.Zemlyanaya, A.A.Bogolubskaya, M.V.Bashashin, N.V.Alexeeva, I.V.Barashenkov

The ϕ^{4} oscillons in a ball: numerical approach and parallel implementation

Results: bifurcation in the region of resonant spikes

magenta dashed: Bessel-like solution

E.V.Zemlyanaya, A.A.Bogolubskaya, M.V.Bashashin, N.V.Alexeeva, I.V.Barashenkov

The ϕ^{4} oscillons in a ball: numerical approach and parallel implementation

Results: stability domains

blue: unstable magenta: stable

The Bessel waves (not shown here) are found to be stable from $E=0$ to the bifurcation point

Summary (1/2)

- Existence of two sets of spherically symmetric standing waves of Eq.(1) in a ball of finite radius is demonstrated.
- First, the Bessel-like waves without explicitly localized core, which are branching off the zero solution and decaying in proportion to r^{-1} as $r \rightarrow R$.
- The second type of nonlinear standing wave in a ball is characterised by an exponentially localised pulsating core and a small-amplitude slowly decaying second-harmonic tail. It comes of the nodeless $n=1$ Bessel wave.
- Numerical continuation of this solution in frequency produces an $E(\omega)$ curve with a sequence of spikes near the undertone points $\omega=\Omega^{(n)} / 2$ with some large n. The left and right slope of the spike adjacent to $\frac{1}{2} \Omega^{(n)}$ result from a period-doubling bifurcation of the n-th Bessel wave.

Summary (2/2)

- Away from the neighbourhoods of the spikes, the $E(\omega)$ curve follows a U-shaped arc with a single minimum at $\omega_{\min }=0.967 \omega_{0}$; the arc bounds all spikes from below. The arc is unaffected by the ball radius variations, as long as R remains large enough. This envelope curve describes the energy-frequency dependence of the nearly-periodic oscillons in the infinite space.
- We have classified stability of these solutions against spherically-symmetric perturbations. Specifically, we focused on the interval $0.91 \omega_{0}<\omega<\Omega^{(1)}$ and considered two values of $R: R=40$ and $R=100$. The ball of radius $R=40$ has only short stability intervals, located at the base of two spikes in its $E(\omega)$ diagram. By contrast, the standing waves in the ball of $R=100$ have long stretches of stable frequencies.

Open questions and Acknowledgments

What next?

- What was obtained at this stage (numerics \& analytics) has been published in Phys Rev D 107 (2023) 076023
- What about stability in case of the ball radius between 40 and 100 ?
- Now the calculations with $\mathrm{R}=70$ are in process
- Accuracy should be improved

Acknowledgments

- The work is supported by the UCT/RSA - JINR Scientific Cooperation Program.
- We thank the HybriLIT team for the help with organization of MATLAB calculations at HybriLIT and Govorun resources.

Thank you for your attention!

