Keldysh Institute of Applied Mathematics Russian Academy of Sciences

Computer Simulation of the Interaction of Metal Nanoparticles with a Substrate

Polyakov S.V., Podryga V.O., Tarasov N.I.

e-mails: polyakov@imamod.ru, pvictoria@list.ru, nikita_tarasov@imamod.ru

The work was supported by the Russian Science Foundation, project No. 21-71-20054

10th International Conference "Distributed Computing and Grid Technologies in Science and Education"
2023, July 3 – 7, Dubna, Russia

Goals and tasks

Main goal is a development of supercomputer technology for simulation of complex processes in technical micro- and nanosystems

The technology includes the following components:

- multi-scale mathematical models set;
- parallel numerical algorithms base;
- parallel software tools;
- applications in nanotechnologies.

Achieved results:

- A multi-level multi-scale approach to the calculations of actual problems of gas and plasma dynamics has been developed and tested.
- 2. Numerical methods for solving both independent and related problems that determine the behavior of the system at various scale levels.
- 3. Parallel algorithms and software packages for simulation of multi-scale problems.
- 4. A database on the properties of substances that includes: parameters of the gas medium, kinetic parameters of gases and metals, parameters for determining of boundary conditions.
- 5. Model calculations for some actual nanotechnology problems.

Metalic Nanoparticles Spraying

Application:

- protective coatings
- microelectronics
- medical equipment
- bio-sensors etc.

Technological methods:

- supersonic cold gasdynamics spraying
- plasma spraying
- magnetron spraying etc.

Birkholz, M.; Ehwald, K.-E.; Wolansky, D.; Costina, I.; Baristiran-Kaynak, C.; Fröhlich, M.; Beyer, H.; Kapp, A.; Lisdat, F. (15 March 2010). "Corrosionresistant metal layers from a CMOS process for bioelectronic applications". *Surface and Coatings Technology*. **204** (12–13): 2055–2059.

Multiscale Analysis

Modeling approaches:

Macroscopic: Continuum Mechanics Models

Mesoscopic: Particle Methods

Microscopic: Molecular Dynamics

Macroscopic and Microscopic: CMM + MD

Macro-, Meso- and Microscopic: CMM + PM + MD

Mathematical Models and Numerical Methods

Mathematical models:

Macroscopic:

Navier-Stocks equations

Quasi Gas Dynamics equations

Maxwell's electrodynamics

Mesoscopic:

Large particles

Smoothed particles

Particle in cells

Particle clouds

Microscopic:

Classic Molecular Dynamics

Quantum Molecular Dynamics

Hartree-Fock approache

Variational models

Numerical approaches:

Splitting on physical processes

Transitions between scales

Macroscopic:

Cartesian grids

Unstructured grids

Hybrid block grids

Finite Volume Method

Explicit or Implicit Time schemes

Spatial and Nonlinearity Iterations

Mesoscopic:

Newton dynamics

Microscopic:

Molecular dynamics equations

Interaction potentials

Spectral methods

Grid methods

Density functional method

Method of atomic orbitals

Parallel technologies and Software tools

Parallel technologies:

Domain decomposition Load balancing

Hybrid computations

Parallel environments:

MPI

OpenMP

CUDA

Hybrids

Programming languages:

C/C++

Fortran

Supercomputers:

K100

K10

K60CPU

K60GPU

Self-maid software:

GIMM_NANO tools:

GIMM_Main_GUI

GIMM_Mesh_Gen_Tool

GIMM Visualizer

GIMM_Jobs_Management

GIMM_IO_Lib

GIMM_APP_MD_CPU_Gas_Metal

GIMM_APP_QGD_CPU

GIMM_APP_QGD_MD_CPU

GIMM_APP_QGD_MD_CPU

Web-solutions:

KIAM_WMCS

KIAM_MDVIS

KIAM_MoISDAG_CPU

KIAM_MMD_WUI

KIAM_DIGITAL_TOOL_SERVER

KIAM_DIGITAL_TOOL_CLIENT

Mesoscopic solution Problem formulation

Model geometry of the problem

Computational Domain Nickel elementary of preliminary numerical experiments

cell on normal conditions: a = 0.35314 nm

1x = 24*a = 8.475 nm

Mesoscopic Approach

Nanospheroid model (form-function):

Neutral case (in electron units of mass and charge):

$$q_{+} = +\left(\sqrt[3]{3N_{a}Z_{a}}\right)^{2}$$
 $q_{-} = -\left(\sqrt[3]{3N_{a}Z_{a}}\right)^{2}$

$$m_{+} = N_{a} m_{a} / m_{e}$$
 $m_{-} = -\left(\sqrt[3]{3N_{a}Z_{a}}\right)^{2}$

 $r_{\alpha,k}$ – radius vector of k-spheroid of α sort

 $\alpha = -$, + - nanospheroid sort

 $C_k(t)$ – normalization parameter

 $R_{\alpha,k}$ – effective radius

 $q_{\alpha,k} \equiv q_{\alpha}$ – charge of particle of α sort

 $m_{\alpha,k} \equiv m_{\alpha}$ — mass of particle of α sort

 N_a , m_a , m_e — number and mass of ions, mass of electrons

Electromagnetics Field Equations

Maxwell equations:

$$div \mathbf{B} = 0 div (\varepsilon_a \mathbf{E}) = \rho$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\operatorname{rot}\mathbf{E} \qquad \qquad \frac{\partial}{\partial t}(\varepsilon_a \mathbf{E}) = \operatorname{rot}\left(\frac{1}{\mu_a}\mathbf{B}\right) - j$$

Electric field as sum of wave processes and particles evolution:

$$E = E^{(w)} + E^{(p)}$$

$$E^{(p)} = -\nabla \varphi$$

$$div(\varepsilon_a E^{(w)}) = 0$$

$$div(\varepsilon_a \nabla \varphi) = -\rho$$

$$\frac{\partial}{\partial t}(\varepsilon_a E^{(w)}) = rot(\frac{1}{\mu_a}B) - j - \frac{\partial}{\partial t}(\varepsilon_a E^{(p)})$$

div, rot	-	divergence and rotor
\boldsymbol{B}	_	magnetic induction vector
ε_a	-	absolute dielectric permeability of the medium
\boldsymbol{E}	-	electric field strength vector
$\rho = \rho_e + \rho_i$	-	volume charge density divided into positive and negative comp.
μ_a	-	absolute magnetic permeability of the medium
j	-	current density vector (generated by particles)
$E^{(w)}$	-	wave processes part of electric field strength
$E^{(p)}$	-	particles evolution part of field strength
φ	-	quasi-static potential of electromagnetic field

Nanocluster Evolution Equations

Newton dynamic with the Lorentz force:

$$\frac{d\mathbf{r}_{\alpha,k}}{dt} = \mathbf{v}_{\alpha,k} \qquad \frac{d\mathbf{p}_{\alpha,k}}{dt} = q_{\alpha,k} \left(\mathbf{E} + \left[\mathbf{v}_{\alpha,k} \times \mathbf{B} \right] \right)$$

$$p_{\alpha,k} = m_{\alpha,k} v_{\alpha,k}$$

$$\rho_{\alpha} = \sum_{k=1}^{N_{\alpha}} q_{\alpha,k} \delta(\mathbf{r} - \mathbf{r}_{\alpha,k})$$

$$j_{\alpha} = \sum_{k=1}^{N_{\alpha}} q_{\alpha,k} \delta(r - r_{\alpha,k}) v_{\alpha,k}$$

 $r_{\alpha,k}$ – radius vector of k-spheroid of α sort

t – time

 $v_{\alpha,k}$ – velocity vector of k-spheroid of α sort

 $p_{\alpha,k}$ — momentum vector of k-spheroid of α sort

 $\alpha = -, +$ – nanospheroid sort

 $k = 1,...,N_a$ – index of nanospheroid of α sort

 $m_{\alpha,k} = m_{\alpha}$ — mass of nanospheroid of α sort

 $q_{\alpha,k} = q_{\alpha}$ - charge of nanospheroid of α sort

 N_a – number of nanospheroids of α sort

Numerical Algorithm

boundary conditions

E, B - inlet TE-wave, absorbing $r_{\alpha,k}$, $v_{\alpha,k}$ - free-out, adhesion or absorption

Initial Conditions

$$E^{(w)} = 0$$

$$\mathbf{B} = 0$$

$$\boldsymbol{E}^{(p)} = \boldsymbol{E}_0(x,y,z)$$

$$r_{\alpha,k} = r_{0,\alpha,k}$$

$$v_{\alpha,k} = v_{Maxwell,\alpha,k}$$

Numerical methods and parallel solution

- 1. Unstructured grids
- 2. Finite Difference Time Difference scheme for Maxwell equations
- 3. Domain decompositon for cluster nodes
- 4. Sub-domain decomposition for CPU threads

Domain decomposition

The Peano's curves technique (MPI-processes)

$$p = p_1 p_2 p_3$$

$$\frac{p_1}{p_2} \approx \frac{N_1}{N_2} \qquad \frac{p_1}{p_3} \approx \frac{N_1}{N_3} \qquad \frac{p_2}{p_3} \approx \frac{N_2}{N_3}$$

p – total number of threads

 p_1, p_2, p_3 – threads per direction (x,y,z)

 N_1, N_2, N_3 – number of mesh elements per direction (x,y,z)

Parallel realization for particles

- 1. Conservative Adams Scheme for Newton's equations
- 2. Domain decompositon for cluster nodes
- 3. Local load-balancing algorithm into each cluster node
- 4. Global load-balancing algoritm between cluster nodes

Load balancing algorithm:

- 1) Initial uniform splitting and calculation by p-threads
- 2) Determining the time t_k (k = 0,...,p-1) of k-thread computing
- 3) Calculation of the average execution time and relative times dispersion:

$$t_s = \frac{1}{p} \sum_{k=0}^{p-1} t_k, \quad \sigma = \max_k |(t_k - t_s)/t_s| \cdot 100\%$$

4) If $\sigma > 5\%$ redistribution of nanospheroids by threads:

$$N_{k} = N_{k} + \gamma N \cdot \frac{q_{k}}{Q}, \quad q_{k} = \frac{N_{k}}{t_{k}}, \quad k = 0, ..., p - 2$$

$$N_{p-1} = N - \sum_{k=0}^{p-2} N_{k}, \quad N = N_{+} + N_{-}, \quad Q = \sum_{k=0}^{p-2} q_{k}, \quad \gamma \sim 0.05$$

Interaction of the nanocluster with the substrate

Initial particles distribution

Speed UP and Efficiency for one cluster node

Node of K60 GPU: 2 x Intel Xeon Gold 6142 v4, 16 threads Task: quasi-equilibrium (20000 time steps) of 25386 nanospheroids

Conclusion

- The complex technology of supercomputer modeling of problems of deposition of metal nanoparticles on substrates is presented.
- A mesoscopic approach to solving spraying problems is considered.
- A sputtering model combining macroscopic and microscopic levels based on Maxwell's equations and equations of particle dynamics is proposed.
- Numerical methods have been developed that combine the grid method FDTD and particle methods PIC and SPE.
- Parallel algorithms for implementing numerical schemes based on MPI and OpenMP technologies have been created.
- Model calculations were carried out that demonstrated the operability and adequacy of the developed computing technology.

Thank you for the attention!