
spbu.ru

Parallel computing technologies and rendering optimization in the 
problem of fluid simulation by the example of the Incompressible 

Schrodinger Flow method.

2023



spbu.ru

Incompressible Schrödinger Flow (ISF)

2

- Two-component wave function of complex variables changing with time according to the 
Schrodinger equation

- Euler method - a fluid is represented as an area that is divided into cells, which forms a grid



spbu.ru

Navier-Stokes equations

3



spbu.ru

Incompressible Schrödinger Flow (ISF)

4

(1)

(2)

(3)

(4)

(5)



spbu.ru

GPGPU (CUDA)

5

The managedCuda library was used, as it has support for the c# language, 
the ability to write your own CUDA kernels, it has a built-in 
implementation of FFT3D and it is actively supported.



spbu.ru

Rendering optimization

6

In order to apply the best methods and technologies, their consideration was previously given outside the problem of 
fluid modeling. We took a set of a large number of elements moving through Perlin noise and considered solutions for 
the most productive rendering.



spbu.ru

Rendering methods

7

1. [Unity Game Objects] The first basic method is based on using standard Unity objects. It has the widest possibilities, because it does not contain 
restrictions in the possibilities of interaction with objects. But it has very low performance, due to the large amount of unnecessary information 
and functionality contained in the Unity Game Object. Suitable for game development, but not for simulations with a large number of objects.

2. [Avoid external calls] This point is more a useful practice in programming large systems than a separate method. Its essence is to minimize 
external calls, in this case, instead of getting the position of the object, in each step we save the resulting position to an array and use it in the next 
step. In general, it is a very useful practice and should be used wherever possible.

3. [Particle System] The third method is to use the Particle System built into Unity. In it we can set the number of particles, their position, speed, 
material and some other parameters. Using meshes (three-dimensional grid) as an element (particle), it does not show the best results. But it has 
very good performance when using billboard display (always an image directed to the screen) ([Particle System Billboard] 3.1 in the table). But, 
accordingly, it has many limitations, such as the inability to set the rotation, the direction of the particle, etc. For many tasks, where displaying the 
positions of particles will be enough is one of the best ways in terms of the speed of execution and the labor spent.

4. [GPU Instancing] This method uses GPU Instancing technology. GPU instantiation is a method of optimizing rendering calls that displays 
multiple copies of a grid with the same material in a single rendering call, where each copy of the grid is called an instance. This is useful for 
drawing objects that appear in the scene multiple times. Creating a GPU instance displays identical meshes in the same rendering call. To add 
variability and reduce the appearance of repetition, each instance may have different properties, such as color or scale. The following described 
methods also use this technology in combination with other features.



spbu.ru

Unity DOTS

8

1. [Job + Burst] New approach called Unity DOTS - Data-Oriented Technology Stack. DOTS is a combination of 
technologies and packages that provides a data-centric approach to development in Unity. Applying data-centric 
design to the project architecture allows you to scale processing with high performance. At this point, 
technologies such as the C# Job System and Burst Compiler are used. Job System allows you to write simple and 
secure multithreaded code so that the application can use all available processor cores to execute code. Burst is a 
compiler that can be used with Unity Job System to create code that improves the performance of your 
application. It translates the code from the IL/ byte code.NET into optimized native processor code using the 
LLVM compiler.

2. [ECS + Job + Burst] This item adds to the previous use of the ECS - Entity Component System. It is a 
data-oriented framework compatible with objects in Unity. This is the best approach without using GPU 
computing, it allows you to get maximum performance while maintaining full control over objects, for example 
by adding the possibility of their interaction. Uses the advantages of the CPU, such as, for example, the size of 
the cache memory. Entities Graphics is used for rendering. Entities Graphics provides systems and components 
for rendering ECS entities. Entities Graphics is not a render pipeline: it is a system that collects the data 
necessary for rendering ECS entities, and sends this data to Unity's existing rendering architecture.



spbu.ru

Compute Shaders

9

1. [Compute Shaders] This point consists in using shaders written in the HLSL language to calculate positions 
directly on the video card and then display them. This way we avoid transferring a large amount of data every 
frame (we only send their initial location and the necessary data at the start) to the video card and use the huge 
computing capabilities of the GPU.

2. [Compute Shaders with Interaction] This item adds the use of Compute Shaders technology, i.e. computational 
shaders. Computational shaders are shader programs that run on the GPU outside of the normal rendering 
pipeline. They can be used for massively parallel GPGPU algorithms, as well as for some rendering stages. The 
system requires support for computational shaders, which satisfies most modern devices, including mobile ones.



spbu.ru

Rendering time comparison

10

10 тысяч 100 тысяч 1 миллион

1 [Unity Game Objects] 21 220 1800

2 [Avoid external calls] 20 190 1700

3 [Particle System] 10,5 120 1200

3.1 [Particle System Billboard] 6,2 31 320

4 [GPU Instancing] 7,8 45 500

5 [Job + Burst] 5,2 21 180

6 [ECS + Job + Burst] 4,7 12 85

7 [Compute Shaders] 3,5 3,6 15

8 [Compute Shaders with Interaction] 3,6 3,8 16



spbu.ru

Rendering time comparison

11



spbu.ru

Simulation rendering

12

Leapfrogging vortex rings



spbu.ru

Simulation rendering time comparison

13

10 тысяч 100 тысяч 1 миллион

1 [GPU Instancing + 
CUDA]

43 82 495

2 [Particles + CUDA] 41,6 70 390

3 [Job + Burst + 
CUDA]

40,8 57,5 250

3.1 [DOTS + CUDA] 40,4 51,6 165



spbu.ru

Simulation examples

14



spbu.ru

Conclusions and further direction of work

15

● Consider optimized versions of DOTS from other developers, as their tests 
show big performance gains

● Implement a simulation task using compute shaders by storing data in a 
GPU buffer and using that buffer in a shader for rendering

● Minimize the amount of data transferred by passing only the position of the 
object, instead of all its points



spbu.ru

Thank you for your attention!

16


