Coordinate reconstruction for microstrip tracking detectors in the BM@N experiment for the configuration of the first physics run

Baranov Dmitry

BM@N experiment

BM@N (Baryonic Matter at Nuclotron) is the first stage experiment at the accelerator complex of NICA

This is a fixed target experiment aimed to study interactions of relativistic heavy ion beams with a fixed target

NICA (Nuclotron-based Ion Collider fAcility) accelerator complex located at Joint Institute for Nuclear Research in Dubna

At this moment, seven BM@N RUNs have already been carried out since 2015:

The detector setup of BM@N

Tracking system

- SiBT (Silicon Beam Tracker) - FSD (Forward Silicon Detector) - GEM (Gas Electron Multipliers) - csC (Cathode Strip Chambers) - DCH (Drift Chambers)

Particle identification system

- TOF400 (1st Time-of-Flight detector) - TOF700 (2nd Time-of-Flight detector)

Other detector systems

- Triggers system
- FQH (Forward Quartz Hodoscope) - ScWall (Scintillator Wall)
- FHCal (Fwd. Hadron Calorimeter)
- HGN (High Granularity Neutron)
\square Magnet SP-41 (0)
T Triggers: $\mathrm{BD}+\mathrm{SiD}$ (1) - Forward Silicon (2)
\square GEM (3)
\square ECAL (4)
- CSC $1 \times 1 \mathrm{~m}^{2}(5)$
\square TOF 400 (6)
\square DCH (7)
\square TOF 700 (8)
\square ZDC (9)

BM@N setup for the previous RUN-7 configuration (spring 2018)

BM@N tracking system

BM@N tracking system consists of high-precision coordinate detectors for charged particle track registration.

The tracking system is subdivided into three parts: beam tracker, inner tracker and outer tracker. The beam tracker includes detectors located inside the vacuum pipe to monitor the beam. The inner tracker comprises detectors located inside the magnet, the outer - outside

BM@N tracking detectors for RUN-8:

Beam tracker:
$\square \quad$ SiBT (Silicon Beam Tracker) : 3 planes of $63 \times 63 \mathrm{~mm}^{2}$
$\square \quad$ SiProf (Silicon Profilometers) : 2 planes of $63 \times 63 \mathrm{~mm}^{2}$
$\square \quad \mathrm{sGEM}$ (small GEM as beam profilometer) : 1 plane of $10 \times 10 \mathrm{~cm}^{2}$

Inner tracker:

$\square \quad$ FSD (Forward Silicon Detector) : 8 half-planes
$\square \quad$ GEM (Gas Electron Multipliers) : 14 half-planes

Outer tracker:

\square small CSC (Cathode Strip Chamber) : 4 planes of $1 \times 1 \mathrm{~m}^{2}$
$\square \quad$ large CSC (Cathode Strip Chamber) : 1 plane of $2 \times 1.5 \mathrm{~m}^{2}$
$\square \quad$ DCH (Drift Chambers) : 2 large multi-wire chambers

Detector	RUN-7	RUN-8	Features	
FSD				RUN-7: 2 stations (14 Si-modules) RUN-8: 4 stations (48 Si-modules)
GEM				RUN-7: 6 stations (6 half-planes)
RUN-8: 7 stations (14 half-planes)				

SiBT and SiProf: microstrip tracking detectors before the target

SiBT (Silicon Beam Tracker) and SiProf (Silicon Beam Profilometer) are semiconductor microstrip two-coordiate detectors designed to monitor and track the ion beam.

They are located before the target inside metal boxes integrated into

The first section of the vacuum pipe containing different detectors

Silicon Beam Tracker

128×128 strips

sensor: 61x61 mm ${ }^{2}$ sensor thickness: $\mathbf{1 7 5} \boldsymbol{\mu m}$ strip pitch: 0.475 mm stereo angle between strips: $\mathbf{9 0}^{\mathbf{0}}$

Silicon Beam Profilometer

32×32 strips

sensor: $58 \times 58 \mathrm{~mm}^{2}$ sensor thickness: $\mathbf{1 7 5} \mu \mathrm{m}$ strip pitch: 1.8 mm stereo angle between strips: 90°

Signal formation

Signal formation in a silicon detector:
(-) 1. A particle, passing through the detector medium, produces electron-hole pairs.
2. Then mobile carriers (electrons and holes) drift to the electrodes, generating a current signal on the readout elements (strips) as 1Dclusters.

In order to reconstruct XY coordinates in two-dimensional space one layer of strips is orthogonal to another.

Forward Silicon Detector

Forward Silicon Detector (FSD) is a high-precision coordinate detector of the inner tracking system in the BM@N setup. It consists of a set of microstrip silicon modules which are assembled into 4 stations.

Silicon stations

Strip configuration in modules

The configuration of strips in each module is represented by the corresponding schemes

Silicon sensors have specific positions in each module of a station. They were measured with a high precision microscope to be taken into account in the model of the detector
sensor thickness: $\mathbf{3 0 0} \mu \mathrm{m}$
strip pitch: $\approx \mathbf{1 0 0} \boldsymbol{\mu m}$
stereo angle between strips: 2.5°

GEM detector

GEM (Gas Electron Multipliers) is a microstrip coordinate detector of the central tracker in the BM@N setup. It consists of gaseous chambers with electron multiplier system inside.

The configuration of this detectors for RUN-8 comprises seven stations located inside the magnet along the beam axis.

GEM chamber types

Upper half-plane

Lower half-plane

Strip readout

The detector chamber used in BM@N has three cascaded GEM foils, separated by gas gaps, and a two-dimensional projective readout on anode strips

Gas volume thickness: 9 mm strip pitch: $\mathbf{8 0 0} \mu \mathrm{m}$ stereo angle between strips: $\mathbf{1 5}^{\circ}$

Signal formation

 gas molecules, producing electron-ion pairs. Positive ions and electrons drift to the cathode and to the anode, respectively
2. Primary electrons, passing through amplifying GEM cascades, gain their kinetic energy and enable secondary ionization. As a result of it is a lot of secondary electrons (electron avalanches). Amplification is about $10^{4}-10^{5}$.
3. Being collected on the anode, electrons form clusters on each strip layer.

CSC detector

CSC (Cathode Strip Chamber) is a gaseous detector with microstrip readout. It belongs to the outer tracking system in the BM@N setup.

The configuration of this detector for RUN-8 consists of four small and one big stations located behind the magnet.

CSC chamber types

gas volume thickness: $\mathbf{7 . 2} \mathbf{~ m m}$ (small CSC) and $\mathbf{6 m m}$ (large CSC) strip pitch: $\approx 2.5 \mathrm{~mm}$
stereo angle between strips: $\mathbf{1 5}^{\circ}$

Strip configuration

Signal formation

Signal formation in a Cathode Strip chamber:

1. When a particle passes through the active gas volume of the detector, it produces ionization (electron-ion pairs) along its trajectory.
2. Primary electrons drift towards the nearest anode wire, where avalanche take place. The resulting ion cloud induces a charge distribution on the cathodes close to the avalanche location by capacitive coupling.
3. Strips are used to sample the charge induced on the cathode planes. The relative values of the induced charges on the strips determine the position of the charged particle passing through the detector.

Microstrip tracking detectors: particle registration

Scheme of particle track registration by pıanes of tracking detectors

1. A heavy-ion beam, extracted from Nuclotron, collides with a fixed target.
2. As a result of this primary interaction is various particles. Their flying directions depend on their charge and a magnetic field which the detector located in (due to the Lorentz force).
3. Passing through the detector planes, a particle leaves a "trace" (response) on each of them. The main goal is to reconstruct a spatial coordinates, called "hit", which the particle passed through. A set of these hits on different planes from one particle defines its trajectory.

Tracking detectors in the BM@N setup (RUN-8) have two-coordinate microstrip readout. In order to reconstruct XY-coordinates the strips of one layer are rotated by certain angle with respect to another layer

Each readout layer consists of a set of strips. The response from a passing particle is represented by one or several fired strips (on each layer) that form a cluster (group of fired strips from one particle).

Coordinate reconstruction: clustering

COORDINATE RECONSTRUCTION:

CLUSTERING

Clustering steps
1 Defining threshold level and cutting noise strips
(2) Finding and splitting welded clusters by the "Peak and Valley" algorithm

3 Calculation of weighted centers of clusters by the "Center of Gravity" algorithm and estimating their deviations

Real clusters

Example: A set of clusters of the strip layer in one module of the FSD detector on experimental data (RUN-8: Xe beam with Csl target)

Example: the result of the clustering algorithm

Found clusters are marked with different colors. Their calculated weighted centers are shown by vertical lines

Coordinate reconstruction: hit finding

COORDINATE RECONSTRUCTION:

CLUSTERING
 HIT FINDING

Hit finding steps

layer of straight strips

layer of inclined strips

Reconstruction of spatial coordinates

Reconstruction of the XY coordinates on the readout plane is performed by finding the intersections of the weighted centers of the clusters for both strip layers:

Z coordinate reconstruction along the particle flight trajectory depends on the type of detectors:

Coordinate reconstruction: hit finding (2)

Shortcoming of microstrip readout

The principal disadvantage of using strips is the appearance of spurious intersections ("ghosts" or "fakes")

In order to decrease the ghost quantity is to rotate strips of one layer by a certain stereo-angle with respect to another layer

orthogonal strips
■ - Real hit

- - Spurious crossing

strips with 45° stereo-angle

strips with 15° : stereo-angle

strips with 2.5° stereo-angle

Increasing number of ghosts with increasing multiplicity

Dependence of ghosts on the number of points

Dependencies of the number of hits on the number of MC point for strips with 15° stereo-angle and orthogonal strips

Microstrip tracking detectors: software implementation

Structure of tracking detectors

All the microstrip tracking detectors have the same hierarchical structure, where:

Strips are integrated into a layer,
Layers - into a module,
Modules - into a stations,
Stations - into a set of stations

Visual example of the structure of one GEM chamber

Stages of data processing

Basic stages of data processing for microstrip tracking detectors in BmnRoot

Software implementation

Software structure for the microstrip tracking detectors
(as a class diagram)

Coordinate reconstruction: the result of the algorithms

Hit reconstruction in Forward Silicon Detector

Hit reconstruction in GEM Detector

Forward Silicon detector (3D view)

Forward Silicon detector (XY view)

GEM detector (XY view)
Reconstructed hits

Summary

What has been done:

\square Software for coordinate reconstruction for microstrip tracking detectors (RUN-8 configuration):

- Silicon Beam Tracker and Beam Profilometers
- Forward Silicon and GEM detectors
- Small and large CSC detectors

Thank you for your attention...

