Study of filtering the negative effects of weather on the detection of objects

Stadnik A.V.

Problem formulation

Task of working-time standarts

The business process of developing time standards

Manual processing

Need to automate process

Basic models and algorithms

Detection task

People and tools

System architecture

Ψ	Ψ	
5	C)	
g	·••	
	>	
0		
Ļ	Ð	
S	S	

servi	Pre- processing	Human detection		Tool detection	HOI		
CNCD	Reduction to the processing size and splitting into frames	Yolov5 human detection	Keypoints detection by mediapipe or Yolov7- nose	Determination by a neural network model of the type, position and size of a set of 36 tools	Determining whether the tool is in the hand. for all people, every hand, all	Time tracking	

36 tools

Task-control service

analysis of working hours divided into operations performed

Research directions

Increasing the robustness of the model - stylization

Increasing the robustness of the model - weather

Weather augmentation in the training of detection models

The generalizing ability of the model is improved

Input data filtering methods

Input data filtering methods - models

different models gives different result

Weather conditions - how to deal with?

Weather detection: /DL/approach

Datasets:

Weather Image Recognition @Kaggle

Weather detection: /DL/approach

Resulting Dataset

Combined & Filtered

Fog (1407), Norm (1605), Rain (1124), Snow (543)

Snow = Snowfall only dynamic here

DL-classifiers comparison

- SqueezeNet: 0.88
- DenseNet: 0.86
- EfficientNet: 0.79
- InceptionV3: 0.74
- MobileNetV3: 0.84
- ResNet18: 0.86
- ResNet50: 0.88
- VGG11_BN: 0.82

Model comparison

DL-classifier

Choice for inference: MobileNetv3 Val & Test metrics

	Precision	Recall	F1-Score	Support	7	Precision	Recall	F1-Score	Support
Fog	0.922360	0.947368	0.934697	627.000000	Fog	0.956113	0.947205	0.951638	644.000000
Norm	0.802632	0.938462	0.865248	650.000000	Norm	0.831117	0.941265	0.882768	664.000000
Rain	0.851030	0.859200	0.855096	625.000000	Rain	0.858506	0.901503	0.879479	599.000000
Snow	0.969163	0.810811	0.882943	814.000000	Snow	0.955524	0.823239	0.884462	809.000000
Accuracy	0.884021	0.884021	0.884021	0.884021	Accuracy	0.898748	0.898748	0.898748	0.898748
Macro Avg	0.886296	0.888960	0.884496	2716.000000	Macro Avg	0.900315	0.903303	0.899587	2716.000000
Weighted Avg	0.891319	0.884021	0.884248	2716.000000	Weighted Avg	0.903852	0.898748	0.898877	2716.000000

Classic CV

Search criteria - sum of wavelet details + PSNR(signal/noise)
is_psnr = psnr > 1.15 && is_wdd = wave_dd < 1.0
 && is_entropy = entropy > 5.5 and entropy < 7.7</pre>

Rain & Snow

Masks of difference frames and statistics for 50 frames.

Rain & Snow

Problem: non-stationary background. Solution: optical flow mask (pi/8~20 degree angle)

Image cleaning (derain)

Rain model: y = x + r : noisy element - rain(snow, fog) The "encoder-decoder" architecture (U-Net) is applicable in most recovery tasks (low-level + high-level features). In the task (rain) - small details => the perception area of the filter is small.

Image cleaning (derain)

OUC-D: two branches. Idea: local and global signs at the same time.

overcomplete-autoencoder
undercomplete-autoencoder

The task of maximum informativeness in local features I F1 F2 C0 Over I → Con

Conv 2D+ Upsampling Overcomplete Network

We do not exclude global signs - they contain significant information for recovery

→ Conv 2D+ Max Pooling Undercomplete Network

Архитектура сети:

Перед добавлением карты объектов из ветки overcomplete -Multi-Scale-Feature-Fusion (MSFF) Block

Perceptual loss (*J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and superresolution," Springer, 2016)

Image cleaning (derain)

Features in the overcomplete architecture. The network captures local information - small details (rain bands and drops) Featuremaps in undercomplete architecture. The network captures highlevel information (animal and background)

OUCD-network: some results

*Exploring Overcomplete Representations for Single Image Deraining using CNNs https://arxiv.org/pdf/2010.10661.pdf

SRN-network

BRN-network

BRN-network deal with rainy image and rain mask

BRN Image Filtering:Test Images

The proposed solution is BRN-network: corrects strong distortions frame-by-frame operation speed of operation (in comparison with simple filters)

BRN Image Filtering: unknown network augmentation

Similar to image "normalization" Does not completely remove noise if patterns are unknown

BRN Image Filtering: Synthesized images

It can be concluded that the "concept" of rain in BRN and generative network coincide

Neural network filtering approach:

DerainZoo: a set of real and synthetic datasets (https://github.com/nnUyi/DerainZoo/blob/ master/DerainDatasets.md)

OUCD – works on light rain

BRN – excellent in heavy rain

Input image with noise (rain, snow) - the output of the model is a clean image The difference (PSNR, SSIM) between the input and output will allow you to assess the presence of rain (snow, etc.)

Filtration effect on detection

Motivation: improving the accuracy of object detection (small tools) Snow + rain - high-frequency details: the filter will remove the high-frequency component of the signal. evaluate how much detection changes during filtering; add information about the "edges" and also evaluate the impact. Network: Yolov5

Фильтрация

Dataset - changes

From top to
 bottom:
original image
after median
 filter
filter + edges
 (sobel)

Results: preliminary

0	###original				
0	Class	P	R	mAP50	mAP50-95
0	all	0.63	0.546	0.584	0.24
0	baseball-bat	0.553	0.492	0.503	0.205
0	knife	0.663	0.725	0.737	0.326
0	pistol	0.676	0.422	0.512	0.189
0	### median filtered				
0	Class	P	R	mAP50	mAP50-95
0	all	0.632	0.489	0.552	0.235
0	baseball-bat	0.546	0.439	0.484	0.198
0	knife	<mark>0.793</mark>	0.701	0.755	0.346
0	pistol	0.557	0.328	0.417	0.16
0	### median filtered	+ Sobel ed	lges		
0	Class	P	R	mAP50	mAP50-95
0	all	0.631	0.538	0.573	0.237
0	baseball-bat	0.574	0.483	0.488	0.182
0	knife	<mark>0.735</mark>	0.722	0.769	0.354
0	pistol	0.585	0.409	0.464	0.176

The effect of BRN-filtering on object detection

The task is to detect tools Problem: weather events reduce the quality of detection, especially of small instruments

Solution: frame filtering The dataset for verification contains large, medium and small objects

Filtering + object detection evaluation methodology

Let's indicate model currently used as "standard" - std, Filtering as F, augmentation of weather as aug

Validation set val, and with augmentation: val+ = aug(val)

Filtering can be different:
F = [med, sob, med+sob, emboss, BRN]

(std+F)(x) = (std(F(train)))(x)

Some questions & notations

What is actually changing? std(val) <-> std(F(val))

And if it's "rain"? std(val) <-> std(val+)

If we remove the "rain"? std(val+) <-> std(F(val+))

Do we need filtering? (std+out)(val), (std+out)(val+)
Does F help? (std+aug)(F(val)), (std+aug)(F(val+))
"Glasses" from bad weather (std+F)(F(val)), (std+F)(F(val+))

Filtering effect to object detection task

*notation: (P, R, [mAP50, mAP50-95])
 ** for small obj (knife)

What is actually changing? std(val) <-> std(F(val))(0.66,0.72,[0.73, 0.32]) \rightarrow (0.68,0.69,[0.74,0.31])

And if it's "rain"? std(val) $\langle -\rangle$ std(val+) (0.66,0.72,(0.73, 0.32)) \rightarrow (0.43,0.20,[0.20,0.07])

If we remove the "rain"? std(val+) <-> std(F(val+))(0.43,0.20,(0.20,0.07)) \rightarrow (0.67,0.62,[0.65,0.25])

Filtering effect to object detection task

*notation: (P, R, [mAP50, mAP50-95])
 ** for small obj (knife)

Do we need filtering? (std+out)(val), (std+out)(val+) (0.69,0.68,[0.69,0.29]), (0.69,0.68,[0.69,0.29])

Does F help? (std+aug)(F(val)), (std+aug)(F(val+))
(0.66,0.57,[0.63,0.28]),(0.81,0.69,[0.75,0.32])

Filtering effect to object detection task

*notation: (P, R, [mAP50, mAP50-95])
 ** for small obj (knife)

"Glasses" from bad weather (std+F)(F(val)),

(std+F)(F(val+))
(0.76,0.69,(0.78,0.35)), (0.80,0.70,(0.73,0.30))

This option gives the best metrics:


```
(std+F)(F(x)) > (std+aug)(x)
(std+F)(F(x+)) \sim (std+aug)(F(x+))
```

Filtering effect to object detection @ ASUTR

'+chisel'

'+hammer'

'-pliers'

'-wrench'

'+scraper'

'--brush'

'+paw_for_gasket' '=handaxe'

class	precision	recall	map05	map05-95	
chisel	-0,058	-0,008	-0,021	-0,053	
hammer	-0,015	0,001	-0,008	-0,009	
scraper	-0,063	0,020	-0,018	-0,020	
tie_tong	-0,036	-0,033	-0,034	-0,023	
brush	0,039	0,021	0,032	0,026	

Thanks for your attention!

ОЦРВ

Corrections! ? Suggestions? Remarks(? Questions ??

