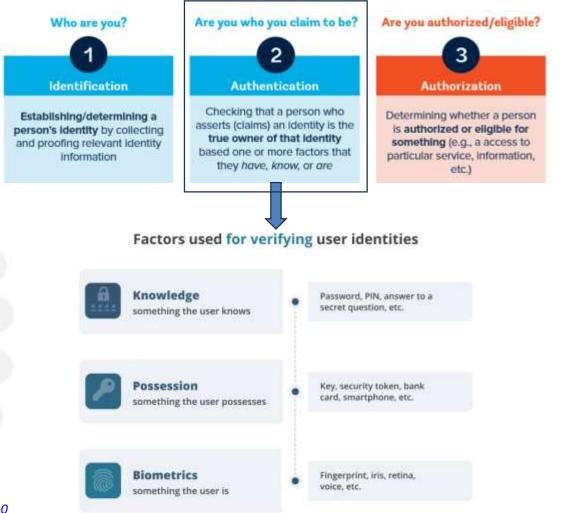


Санкт-Петербургский государственный университет www.spbu.ru

CONTINUOUS AUTHENTICATION IN INTERNET OF THINGS SYSTEMS


by Iurii Matiushin, Saint Petersburg State University and Vladimir Korkhov, PhD, Saint Petersburg State University

Questions

- What are authentication and continuous authentication?
- What challenges does IoT offer in terms of authentication?
- What methods and approaches can fit the task of continuous authentication in IoT systems?
- What are the future research directions?

What is authentication?

- Authentication is a part of a larger system access pipeline.
- Arguably most important from the security standpoint.
- Authentication methods are numerous, usually classified by *factor*.

Continuous authentication

- Continuous authentication
 (CA) is a new approach to user authentication.
- CA main idea check the user's authenticity many times throughout the session.
- CA is a part of a broader
 security paradigm called Zero Trust Security Architecture.
- Multiple CA algorithms exist, many are based on *biometric methods* (inherence factor).

Three characteristics of secure authentication

Types of continuous authentication

1. <u>https://www.ekransystem.com/en/blog/continuous-authentication</u>

2. <u>https://www.techtarget.com/searchsecurity/definition/continuous-authentication</u>

Common CA methods

Keystroke-based user recognition

How the user presses the keys, enters certain combinations, etc.

Face identification

Continuous observation of the user's face via a camera

Mouse movement recognition

How the user moves the mouse, clicks the mouse buttons, etc.

Touch gesture-based authentication

How the user interacts with a touchscreen device, presses, swipes, performs multi-touch gestures, etc.

User behaviour-based authentication

The patterns of the user's interactions with the system, possibly combined with other methods

IoT challenges for CA

Limited computational and storage resources

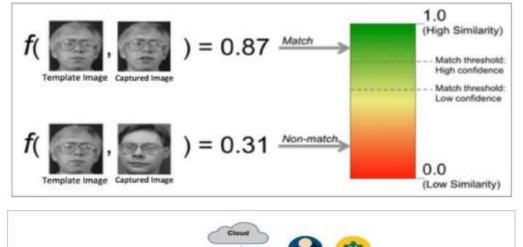
• Resource-intensive authentication methods might not be optimal

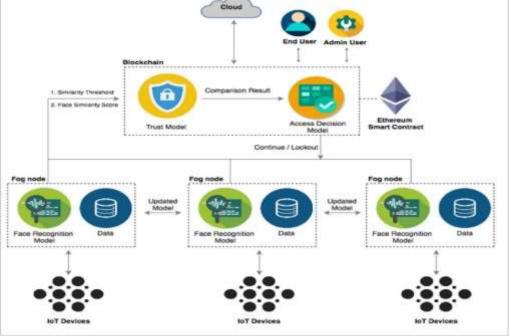
Limited energy and bandwidth

 Important to choose lightweight authentication methods and take network limitations into account

Lack of conventional user interface

• Most common continuous authentication methods require input devices


Existing approaches for IoT


- Continuous authentication methods that can be suitable for IoT environments include:
 - Face recognition and blockchain-based method
 - User gait-based method
 - Shared secret-based hybrid method
 - PUF (physical unclonable function)/device architecture-based hybrid method
 - Context-based hybrid method
- The following slides provide a brief overview of each method.

Blockchain-based method

- Article: Continuous

 authentication architecture
 based on Blockchain for
 internet of things by F. Hussain
 Al-Naji and R. Zagrouba.
- Method: CAB-IoT a distributed and scalable blockchain-based CA method.
- Face recognition is used to detect intruders with the help of a trust module.
- A *distributed ledger* is used, based on Ethereum smart contract.

Gait-based method

- Article: Continuous
 Authentication and
 Authorization for the Internet
 of Things by M. Shahzad and
 M. P. Singh.
- Method: WifiU dynamic biometric authentication based on gait.
- Based on changes in CSI (channel state information) and RSS (received signal strength) as a user is walking.
- The system learns the user's walk patterns and uses them for authentication.

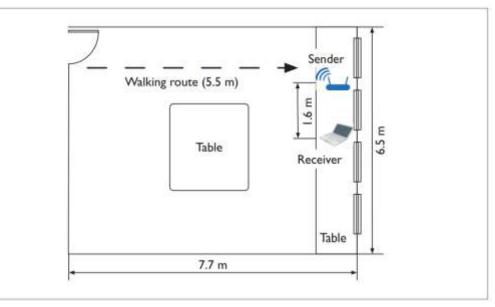
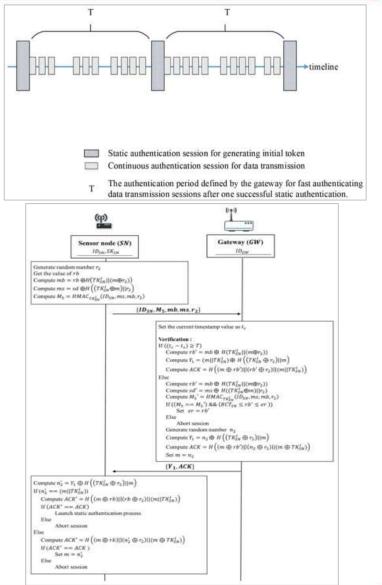
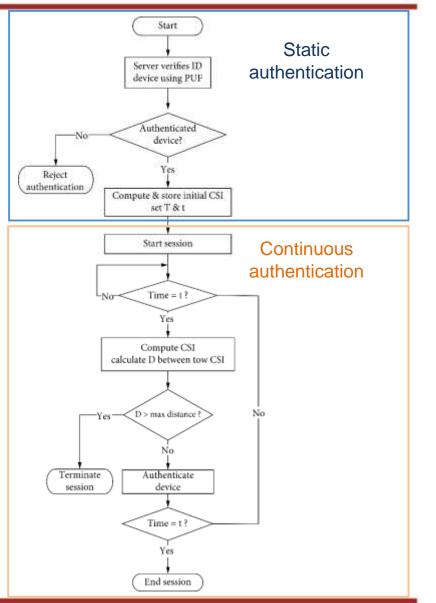
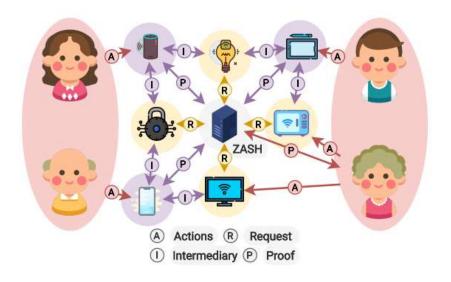
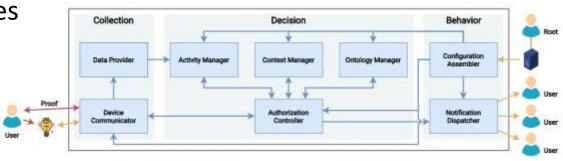



Figure 1. Data collection environment. Walking in an area of 50 square meters, we gathered more than 2,800 gait instances from 50 human subjects.


Shared secret method

- Article: A Lightweight Continuous
 Authentication Protocol for the Internet of Things by Y.-H. Chuang et al.
- Method: hybrid static and continuous device authentication protocol.
- First, the device and the gateway are initialized, sharing important information, including a shared secret.
- During the *static* authentication phase, the device authenticates via cryptography and sends its data to the gateway.
- During the *continuous* authentication phase, the gateway uses the message's timestamp and the device's battery charge.


PUF-based method


- Article: PUFDCA: A Zero-Trust-Based IoT Device Continuous Authentication Protocol by S. Alshomrani and S. Li.
- Method: *PUFDCA* two-stage hybrid device authentication method based on unique device properties and device location.
- The first stage uses PUF (physical unclonable function), which is based on a device's physical microstructure.
- The second stage uses CSI measurements to verify the device's location during a session.

Context-based method

- Article: Zero Trust Access
 Control with Context-Aware
 and Behavior-Based
 Continuous Authentication for
 Smart Homes by G. R. de Silva,
 D. F. Macedo, and A. L. dos
 Santos.
- Method: ZASH Zero-Aware Smart Home System.
- The method uses context clues (time, device, etc.) and prompts the user for a biometric proof (e. g.
 fingerprint) in case of suspicious behaviour.

Methods comparison

Name	Year	Main principle	Advantages	Limitations
CAB-IoT	2020	Based on face recognition and a distributed ledger	Limited bandwidth and storage requirements, resources- intensive processes handled by fog nodes, high accuracy	Limited robustness testing so far; face observation needed; fog nodes needed
WifiU	2017	Based on user's gait, or the manner of walking	Does not need special hardware or lighting, easier to deploy and better coverage vs. video-based methods	Distance limited to 6 m, recognition accuracy limited, single user only, walking needed
Chuang et al.	2018	Static authentication via a shared secret, continuous authentication via timestamp and battery charge	Lightweight cryptography, taking limited computing resources and storage into account,	Needs initialization phase, needs secure storage for secrets, frequent messaging
PUFDCA	2022	Static authentication via PUF, continuous authentication via device location	Lightweight, low energy consumption, resistance against multiple attack types	Static authentication required before each connection, needs secure environment
ZASH	2021	Context clues and biometric proof in case of suspicion	Flexible, multiple access levels, protects against impersonation attacks	Needs stable behaviour patterns

Based on existing methods suitable for IoT, we can identify several features that a prospective continuous authentication algorithm could have:

- ✓ Distributed added scalability
- ✓ Biometric most common and efficient approach
- Hybrid combines static and continuous authentication for flexibility and security
- ✓ Context-aware for further security
- ✓ User type-aware useful in both home and corporate IoT

Conclusions

- Continuous authentication (CA) is a newer and more secure way of user authentication.
- IoT presents unique challenges for CA, including limited computational resources and lack of keyboard/mouse input.
- Several CA methods suitable for IoT have been considered.
- Each method has its own advantages and limitations; some are concerned with authenticating *devices*, while others are concerned with authenticating *human users*.
- Future research directions:
 - Biometric technologies most applicable to IoT-suitable CA
 - Distributed technologies most applicable to IoT-suitable CA
 - > New algorithms based on the existing algorithms' best features

Санкт-Петербургский государственный университет spbu.ru