WLCG evolution towards the High-Luminosity LHC

M. Litmaath, CERN

What is the Worldwide LHC Computing Grid?

Worldwide data storage and processing 24/7

LHC experiment data on tape at CERN

Disk pledge history

Corresponding increases in computing

Ever increasing luminosity ...

... leading to ever increasing processing needs

... that require improvements in SW & services

Computing model & SW evolution

- Improved data formats for less space and faster processing
 - <u>RNTuple</u>
- Alternative architectures for cheaper and/or faster processing
 - ARM
 - GPU
 - Physics validation!
- SW development groups, foundations and projects foster R&D
 - <u>SFT</u>
 - <u>HSF</u>
 - IRIS-HEP
 - <u>SWIFT-HEP</u>
 - ...

WLCG facility perspectives

- HW cost trends do we still get +15% per year with flat budgets?
- Energy costs may rise significantly, depending on the country
 - Power and cooling
- Alternative architectures may be better in one or more ways
 - Work per second per monetary budget
 - Work per second per energy budget
- Energy may also be saved at peak periods
 - CPU frequency reduction
 - Active capacity reduction
- Future: climate-neutral data centers...
- Now: new T1 centers coming for LHCb !
 - NCBJ, Poland
 - IHEP, China

And a new data center for CERN !

To be ready for first use cases in November...

Analysis Facilities

- HL-LHC computing models foresee Analysis Facilities as a new type of resources
- Some WLCG facilities may want to offer such resources instead of traditional set-ups, or even in addition
 - Proper recognition needed in pledges and accounting
- Input data must not too quickly become the bottleneck
 - Fast local storage and network are needed (cf. HPC burst buffers)
 - Possibly in the form of caches, i.e. local data losses can be tolerated
- Profiting again from alternative architectures
 - ARM
 - GPU
- Users may access such services through notebooks
 - Jupyter, ...
 - Auto-scaling from the laptop to the grid...

Benchmarking & Accounting

- After 14 years of service, the HEP-SPEC06 legacy CPU benchmark is being phased out
- As of April 2023, its successor should be used for *new* HW: <u>HEPScore23</u>
- <u>HEPScore</u> is a flexible, modern benchmarking suite
 - Based on containers and a configurable variety of reference workloads
- HS23 is a specific benchmark constructed from 7 modern HEP workloads
 - Released for x86_64 and ARM
 - Adopted by WLCG and EGI
 - Big implications for the whole CPU pledge & accounting chain
 - ARC and HTCondor CE, OSG GRACC, APEL, EGI Accounting Portal, WAU, CRIC
 - Overall coordination through the <u>Accounting TF</u>
- Still to come: GPU support !
 - Vital for future pledges and accounting

High Performance Computing centers

- HPC centers are used by the experiments since many years
 - Mostly opportunistically so far
 - Also part of NDGF-T1 pledges
- Some countries may intend to pledge HPC rather than HTC resources
- Various barriers have been reduced over the years, some still exist
 - Operator access controls
 - Network access limitations
 - Lack of CVMFS
 - ...
- Some can be worked around
 - ARC CE data handling
 - ARC Control Tower
 - ...
- EU and US projects help make HPC look more like our HTC sites

Cloud computing

- Experiments have been using commercial cloud resources through special projects since many years
 - Sponsored by big providers and EU projects
- So far, resources on our own premises have been less expensive
 - That is expected to change in the coming years, though
- For computing, cloud procurements can make a lot of sense
 - Potential accounting issue: no HS23 ratings for the underlying HW...
- For storage, we must be able to abandon our data!
 - All **custodial** storage must remain with our T0 and T1 sites
 - Data replicas in the cloud help speed up processing and analyses
- Integrating such resources has security implications
 - Their CAs are not in IGTF
 - The <u>Resource Trust Evolution TF</u> is looking into sustainable recipes

Containers

- At most sites, pilot jobs of the LHC experiments run user tasks in <u>Apptainer</u> (was: *Singularity*) containers distributed via <u>CVMFS</u>
 - Provide legacy payloads with their expected environments
 - Isolate payloads to limit interference and potential fallout
- Containers are also used increasingly for service deployments
 - Can come largely pre-configured
 - Pods with micro-services can be restarted or scaled up as needed
 - If the service design allows for that
 - May help simplify the lives of site admins!
- Victoria T2 all services already on Kubernetes except storage
 - R&D project: EOS deployment via K8s on CephFS

Storage

- Erasure coding has matured and may allow sites to recover lots of disk space while still providing good resilience to HW failures
- As an alternative to expensive tape storage, T1 sites may consider looking into custodial *disk* storage
 - <u>KISTI</u> have pioneered such a service for ALICE, in production since 2021
- Industry has been looking into new custodial storage technologies (e.g. optical) since many years, but progress has been slow
 - Also of interest to cloud providers
- Object stores and access protocols are becoming more popular
 - Ceph
 - **S**3
 - Experiment data model adjustments desired or required to take full advantage
 - RNTuple

Networks

- Dual-stack deployment of storage has reached ~94% at the T2 sites
- IPv4 will need to remain supported at least a few more years for *legacy* workflows that cannot handle IPv6
- IPv6 networks allow new features to be taken advantage of
 - Dynamic provisioning through <u>Software Defined Networks</u>
 - Allowing better use of available capacity instead of relying on overprovisioning
 - Packet marking and flow labeling
 - Allowing activities to be monitored separately, both between and within VOs
- New L3 VPNs like <u>LHCONE</u> are expected to be set up for partner projects
 - Our MW and network monitoring tools will also be shared where feasible
- Such networks also need to be interfaced with HPC centers and cloud providers
 - To avoid overloading general-purpose networks connecting sites to the internet

Monitoring

- Though many systems are used by experiments and sites, complete overviews at the WLCG level are tricky and incomplete
- For example, <u>data traffic monitoring</u> improvements (in particular for the *Xrootd* protocol) concern a number of stakeholders
 - Experiments
 - SE and FTS developers
 - CERN MONIT and IAM teams (see next page)
 - WLCG, OSG and EGI Operations
- MONIT is foreseen to be used even more for consolidation
 - With <u>CRIC</u> used as WLCG information system
- New systems keep emerging and gaining popularity in many places
 - Prometheus
 - ...

Authentication & Authorization

- Since a few years, WLCG has started transitioning from X509 user certificates and VOMS proxies towards using WLCG tokens instead
 - Arguably our biggest change ever!
 - Will also allow us to phase out the remaining <u>Globus</u> dependencies
- A <u>timeline</u> with tentative milestones was published in August 2022
- Coordinated by the <u>Authorization WG</u> and the <u>Bulk Data Transfers WG</u>
- Computing in production for OSG & WLCG, WIP for <u>EGI Check-in</u> tokens
- Data discussions ongoing between stakeholders
 - Experiments, CTA, dCache, DIRAC, Echo, EOS, FTS, IAM, Rucio, StoRM, XRootD, ...
 - Rates, lifetimes, scopes, ...
 - Plans for Data Challenge 2024 (March) are shaping up!
- End game (~2026): users no longer need X509 certificates!
 - And do not need to know about tokens either!

New use case: message bus authN/authZ for *monitoring*

Experiment token issuer architecture

Operations Coordination

- Coordinating the evolution of the WLCG infrastructure is part of the mandate of the <u>Operations Coordination</u> team, in close collaboration with stakeholders
 - Experiments
 - Infrastructure provider projects
 - Sites
 - Middleware projects
- Various activities serve in different capacities
 - Weekly <u>operations</u> meetings
 - Monthly Operations Coordination meetings
 - <u>Task forces</u>
 - Working groups
 - Grid Deployment Board and Management Board meetings
 - Workshops

Partners & Projects

- WLCG users and admins will rely on *federated identities* to have access to vital auxiliary services through <u>EGI Check-in</u>
- For example: <u>GGUS</u>
 - To be replaced next year by a <u>new WLCG Helpdesk</u> !
- Current and new infrastructure and SW partnerships and projects will continue playing important roles
 - EGI, NeIC, OSG, ASGC, IGTF, HEPiX, GÉANT, ESnet, ATCF, perfSONAR, ...
 - EOSC-Future, PATh, EuroHPC JU, PRACE, ...
 - And all the *middleware* and *experiment software* projects!
- Infrastructure and middleware will continue being shared with other communities, in particular through MoUs with various collaborations
 - Belle II, DUNE, JUNO, Virgo, SKAO, ...

Not so fast...

- Security incidents may affect part of our infrastructure at times
 - Security experts from our infrastructure provider projects and sites collaborate to minimize the fallout
 - For example through the <u>SAFER</u> trust group
 - WLCG sites can collaborate on incident response and prevention through the <u>Security Operations Center WG</u>
 - Sites can contribute through passive DNS SOC services
- We may be affected by upstream licensing or support changes
 - Case in point: the new <u>RHEL source code policy</u>
 - With consequences for <u>AlmaLinux</u> and <u>Rocky Linux</u>

Conclusions & Outlook

- Since many years, the Worldwide LHC Computing Grid has successfully provided the distributed computing infrastructure for the CERN LHC experiments.
- During that time, the WLCG has seen evolution in technologies as well as growth, to deal with ever increasing data rates.
- Those trends need to be made to continue, to allow the WLCG to take on High-Luminosity LHC data volumes as of 2029.
- Improvements across a wide range of services and software have been described, some of which already bring benefits as of today.
- Thanks to many partners and projects, not only do the LHC experiments profit, but many other communities as well !

